

HEIDENHAIN

Systèmes de mesure angulaire sans roulement

Les informations sur les

- systèmes de mesure angulaire avec roulement intégré
- capteurs rotatifs
- systèmes de mesure pour entraînements électriques
- systèmes de mesure linéaire à règle nue
- systèmes de mesure linéaire pour machines-outils à commande numérique
- électroniques d'interface HEIDENHAIN
- commandes numériques HEIDENHAIN sont disponibles sur demande ou à l'adresse internet www.heidenhain.fr.

Le catalogue *Interfaces* (ID 1078628-xx) contient une description détaillée de toutes les interfaces disponibles, ainsi que des informations électriques d'ordre général.

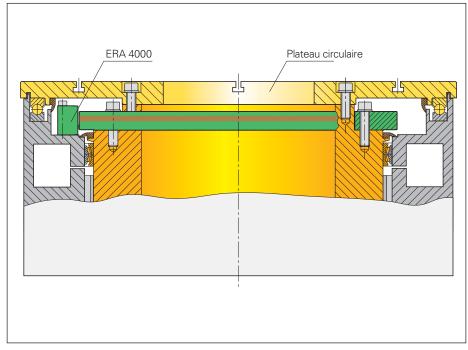
La parution de ce catalogue invalide toutes les éditions précédentes.
Pour toute commande passée chez
HEIDENHAIN, la version de catalogue qui prévaut correspond toujours à l'édition courante à la date de la commande.

Les normes (EN, ISO, etc.) s'appliquent uniquement lorsqu'elles sont expressément citées dans le catalogue.

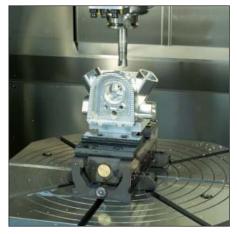
Sommaire

ue d'ensemble				
	Systèmes de mesure	e angulaire HEIDENHAIN		4
	Tableau d'aide à la sélection	Systèmes de mesure angulaire et systè	emes de mesure à encastrer sans roulement	6
	Selection	Systèmes de mesure angulaire absolue	avec roulement	10
		Systèmes de mesure angulaire incréme	entale avec roulement	12
ractéristiques 1	techniques et instructions	s de montage		
	Principes de mesure	Support de mesure, procédé de mesure	e incrémentale	14
	Balayage du support	de la mesure		16
	Précision de mesure			18
	Fiabilité			22
	Structures mécaniqu	ues et montage		24
		iques d'ordre général		32
écifications te		Série ou type	Précision de la gravure	52
				0.4
	Systèmes de mesure angulaire sans roule- ment	EKP 880	± 0,9"	34
		ERP 4080/ERP 8080	jusqu'à ± 1,0"	36
		Série ERO 6000	jusqu'à ± 2,0"	38
		ERO 6180	± 10"	40
		Série ERA 4000	jusqu'à ± 1,7"	42
		Série ERA 7000	jusqu'à ± 1,6"	48
		Série ERA 8000	jusqu'à ± 1,9"	52
ccordement él	ectrique			
	Interfaces et	Signaux incrémentaux	∼1 V _{CC}	56
	repérage des broches		ПППГ	57
	Câbles et connecteu	rs		58
	Équipement de cont	rôle HEIDENHAIN		61
	Électroniques d'inter			64
				66
	Électroniques d'expl			

Systèmes de mesure angulaire HEIDENHAIN


D'une manière générale, on appelle systèmes de mesure angulaire les systèmes de mesure ayant une précision inférieure à ± 5" et comptant plus de 10 000 traits.

Les systèmes de mesure angulaire sont destinés à la **mesure d'angles de grande précision**, de l'ordre de grandeur de quelques secondes d'arc. On les trouve dans les plateaux circulaires, les têtes pivotantes de machines-outils, les axes C des tours, mais également sur les équipements de mesure, télescopes, etc.


D'autres applications, comme les scanners, les systèmes de positionnement, les rotatives d'imprimerie ou les systèmes de déflexion de faisceau, exigent une **très grande reproductibilité** et une **résolution angulaire très élevée.** Les systèmes de mesure pour de telles applications sont également considérés comme des systèmes de mesure angulaire.

Par contre, les capteurs rotatifs sont destinés aux applications de moindre précision, telles que la technique d'automatisation, les entraînements électriques, etc.

Les tableaux aux pages suivantes proposent divers systèmes de mesure angulaire en fonction des applications et de leurs exigences.


Montage du système de mesure angulaire ERA 4000 sur le plateau circulaire d'une machine-outil

Plateau circulaire d'une machine-outil

Table XYT

Télescope de grandes dimensions

Systèmes de mesure angulaire sans roulement

Les systèmes de mesure angulaire sans roulement (à encastrer) **ERP, ERO** et **ERA** se composent de deux éléments (tête captrice et support de la gravure) qui sont ajustés l'un par rapport à l'autre lors du montage. L'excentricité de l'arbre, le montage et le réglage ont donc une incidence significative sur la précision finale recherchée.

Les systèmes de mesure angulaire à encastrer existent en plusieurs versions avec différents supports de gravure :

- ERP/ERO : disque gradué en verre avec moveu
- ERA 4000 : tambour en acier
- ERA 7000/8000 : ruban en acier

Les systèmes de mesure angulaire sans roulement sont à intégrer dans des éléments de machines ou dans des équipements. Ils répondent aux exigences suivantes :

- arbre creux de grand diamètre (jusqu'à 10 m, solution avec ruban)
- vitesses de rotation élevées
- pas de couple supplémentaire au démarrage grâce aux joints d'étanchéité
- reproductibilité élevée
- haute flexibilité d'adaptation sur le lieu d'implantation (version cercle entier ou version segment de cercle pour la solution avec ruban)

Les systèmes de mesure angulaire sans roulement n'étant pas cartérisés, c'est la qualité du montage qui, en principe, garantit l'indice de protection requis.

Tableau d'aide à la sélection, voir page 6 à 9

Systèmes de mesure angulaire avec roulement intégré

Les systèmes de mesure angulaire avec roulement **RCN**, **RON**, **RPN** et **ROD** sont des systèmes complets entièrement protégés. Ils se caractérisent par leur simplicité de montage et un minimum de réglages. L'accouplement statorique intégré (RCN, RON et RPN) ou l'accouplement d'arbre séparé (ROD) compense les jeux de l'arbre moteur.

Les systèmes de mesure angulaire avec accouplement statorique intégré ont un excellent comportement dynamique. En effet, lors d'une accélération angulaire de l'arbre moteur, l'accouplement n'est sollicité que par le couple de rotation résultant du frottement du roulement.

Autres avantages:

- forme compacte, espace de montage réduit
- arbres creux jusqu'à 100 mm pour le passage des câbles d'alimentation, etc.
- facilité de montage
- larges tolérances de montage

Tableau d'aide à la sélection, voir page 10 à 13

Informations détaillées sur les **systèmes de mesure angulaire avec roulement** disponibles à l'adresse internet *www.heidenhain.fr* ou dans le catalogue

Tableau d'aide à la sélection

Systèmes de mesure angulaire sans roulement

Série	Version et montage	Principales dimensions en mm	Diamètre D1/D2	Précision de la gravure	Vitesse de rota- tion adm. méc.
Systèmes d	e mesure angulaire a	vec gravure sur verre			
ERP 880	Réseau de phases sur disque gradué avec moyeu, vissé sur la face frontale de l'arbre	36.8	-	± 0,9"	≤ 1000 min ⁻¹
ERP 4000	Réseau de phases sur disque gradué avec moyeu, vissé sur la face frontale de l'arbre	28.3	D1 : 8 mm D2 : 44 mm	± 2"	≤ 300 min ⁻¹
ERP 8000		ØD2	D1 : 50 mm D2 : 108 mm	± 1"	≤ 100 min ⁻¹
ERO 6000	Division METALLUR sur disque en verre avec moyeu, vissé sur la face frontale de l'arbre	26.1 Ø D2	D1 : 25/95 mm D2 : 71/150 mm	± 5"/ ± 3,5"	≤ 1600 min ⁻¹ / ≤ 800 min ⁻¹
ERO 6100	Division chrome sur verre, vissé sur la face frontale de l'arbre	26.1 Ø D2	D1 : 41 mm D2 : 70 mm	± 10"	≤ 3500 min ⁻¹
Systèmes d	e mesure angulaire a	vec division sur tambour en	acier		
ERA 4x80	Tambour gradué avec collerette de centrage, vissé sur la face frontale de l'arbre	46 19 20 20 20 20 20 20 20 20 20 20 20 20 20	D1 : 40 mm à 512 mm D2 : 76,5 mm à 560,46 mm	± 5" à ± 2"	≤ 10000 min ⁻¹ à ≤ 1500 min ⁻¹
ERA 4282	Tambour gradué pour grande précision, vissé sur la face frontale de l'arbre		D1 : 40 mm à 270 mm D2 : 76,5 mm à 331,31 mm	± 4" à ± 1,7"	≤ 10 000 min ⁻¹ à ≤ 2500 min ⁻¹

¹⁾ avec interpolation intégrée

Interface	Périodes de signal/tour	Marques de référence	Туре	Page
∼1V _{CC}	180 000	une	ERP 880	34
∼1V _{CC}	131 072	aucune	ERP 4080	36
∼1Vcc	360 000	aucune	ERP 8080	
∼ 1 V _{CC}	9000 18000	une	ERO 6080	38
ПШПТ	45000 à 900000 ¹⁾	une	ERO 6070	
∼1 V _{CC}	4096	une	ERO 6180	40
∼1 V _{CC}	12 000 à 52 000	à distances codées	ERA 4280C	42
	6000 à 44000		ERA 4480C	
	3000 à 13000		ERA 4880C	
∼1 V _{CC}	12000 à 52000	à distances codées	ERA 4282C	46

ERO 6080

Tableau d'aide à la sélection

Systèmes de mesure angulaire sans roulement et systèmes de mesure encastrables

Série	Version et montage	Principales dimensions en mm	Diamètre D1/D2	Précision de la gravure	Vitesse de rota- tion adm. méc.	
Systèmes o	Systèmes de mesure angulaire avec division sur ruban en acier					
ERA 7000	Ruban de mesure en acier pour montage intérieur, ver- sion cercle entier ¹⁾ , ruban tendu sur la circonférence	46	458,62 mm à 1146,10 mm	± 3,9" à ± 1,6"	≤ 250 min ⁻¹ à ≤ 220 min ⁻¹	
ERA 8000	Ruban de mesure en acier pour montage extérieur, version cercle entier ¹⁾ , ruban tendu sur la circonfé- rence	46	458,11 mm à 1145,73 mm	± 4,7" à ± 1,9"	env. ≤ 45 min ⁻¹	
Systèmes o	Systèmes de mesure à encastrer avec gravure magnétique					
ERM 2200	Tambour gradué en acier avec division MAGNODUR, vissé sur la face frontale de l'arbre	50 0 20	D1 : 70 mm à 380 mm D2 : 113,16 mm à 452,64 mm	± 7" à ± 2,5"	≤ 14000 min ⁻¹ à ≤ 3000 min ⁻¹	
ERM 200	Tambour gradué en acier avec division MAGNODUR, vissé sur la face frontale de l'arbre	54 20 20 20 25 25 25 25 25 25 25 25 25 25 25 25 25	D1 : 40 mm à 410 mm D2 : 75,44 mm à 452,64 mm	± 11" à ± 3,5"	≤ 19000 min ⁻¹ à ≤ 3000 min ⁻¹	
ERM 2400	Tambour gradué en acier avec division MAGNODUR, fixation par serrage	50 0 20	D1 : 40/55 mm D2 : 64,37/75,44 mm	± 17" à ± 9"	≤ 33000 min ⁻¹ à ≤ 27000 min ⁻¹	
ERM 2900	industripur sorrage		D1 : 40 mm à 100 mm D2 : 58,6 à 120,96 mm	± 68" à ± 33"	≤ 47000 min ⁻¹ à ≤ 16000 min ⁻¹	

¹⁾ versions segment de cercle sur demande

Interface	Périodes de signal/tour	Marques de référence	Туре	Page
∼1V _{CC}	36000 à 90000	à distances codées	ERA 7480C	48
∼1 V _{CC}	36000 à 90000	à distances codées	ERA 8480C	52
∼ 1 V _{CC}	1800 à 7200	une	ERM 2280	Catalogue Systèmes de mesure magnétiques encastrables
□□□□	600 à 3600	une	ERM 220	
∼1 Vcc			ERM 280	
∼1 V _{CC}	512 à 600	une	ERM 2485	
∼1 V _{CC}	192 à 400	une	ERM 2984	

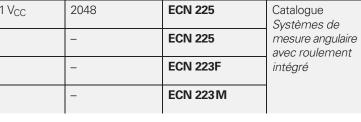
Tableau d'aide à la sélection

Systèmes de mesure angulaire absolue avec roulement

Série	Principales dimensions en mm	Précision du système	Vitesse de rotation adm. méc.	Valeurs de position/ tour	Interface
Avec accouplem	nent statorique intégré				
RCN 2000	0,10	± 5"	≤ 1500 min ⁻¹	67 108 864 ≙ 26 bits	EnDat 2.2/02
					EnDat 2.2/22
	55 Ø 20				Fanuc 05
					Mit 03-4
		± 2,5"		268435456 ≙ 28 bits	EnDat 2.2/02
					EnDat 2.2/22
					Fanuc 05
					Mit 03-4
RCN 5000		± 5"	≤ 1500 min ⁻¹	67 108 864 ≙ 26 bits	EnDat 2.2/02
	0110				EnDat 2.2/22
	42 Ø 35				Fanuc 05
					Mit 03-4
		± 2,5"		268435456 ≙ 28 bits	EnDat 2.2/02
					EnDat 2.2/22
					Fanuc 05
					Mit 03-4
RCN 8000		± 2"	≤ 500 min ⁻¹	536870912 ≙ 29 bits	EnDat 2.2/02
	000				EnDat 2.2/22
					Fanuc 05
	40 Ø 60				Mit 03-4
		± 1"			EnDat 2.2/02
	00700				EnDat 2.2/22
					Fanuc 05
	40 Ø 100				Mit 03-4
avec accouplem	ent statorique monté à l'extérieur				
ECN 200	0,10	± 10"	≤ 3000 min ⁻¹	33554432 ≙ 25 bits	EnDat 2.2/02
					EnDat 2.2/22
	59 max. Ø D			8388608 ≙ 23 bits	Fanuc 02
	D: 50 mm max.				Mit 02-4

Signaux incrémentaux	Périodes de signal/tour	Туре	Informations complémentaires
~1V _{CC}	16 384	RCN 2380	Catalogue Systèmes de
_	-	RCN 2310	mesure angulaire avec roulement
-	-	RCN 2390F	intégré
-	-	RCN 2390M	
√ 1 V _{CC}	16 384	RCN 2580	
_	-	RCN 2510	
_	-	RCN 2590F	
_	-	RCN 2590M	
∼1 V _{CC}	32 768	RCN 5380	
_	-	RCN 5310	
_	-	RCN 5390F	
_	-	RCN 5390M	
∼1 V _{CC}	32 768	RCN 5580	
_	-	RCN 5510	
_	-	RCN 5590F	
_	-	RCN 5590M	
∼1 V _{CC}	32 768	RCN 8380	
_	-	RCN 8310	
_	-	RCN 8390F	
_	-	RCN 8390M	
∼1 V _{CC}	32 768	RCN 8580	
_	-	RCN 8510	
_	-	RCN 8590F	
-	-	RCN 8590M	
∼1V _{CC}	2048	ECN 225	Catalogue

RCN 2000


RCN 5000

RCN 8000 Ø 60 mm

RCN 8000 Ø 100 mm

Tableau d'aide à la sélection

Systèmes de mesure angulaire incrémentale avec roulement

Série	Principales dimensions en mm	Précision du système	Vitesse de rotation adm. méc.	Interface
Avec accouplem	ent statorique intégré			
RON 200	ON 200	± 5"	≤ 3000 min ⁻¹	ППТГ
				ПШПГ
	55 0 20			∼ 1 V _{CC}
		± 2,5"		∼ 1 V _{CC}
RON 700	59 0 50	± 2"	≤ 1000 min ⁻¹	∼1V _{CC}
	40 Ø 60			∼1 V _{CC}
RON 800 RPN 800		± 1"	≤ 1000 min ⁻¹	∼1 V _{CC}
	40 Ø 60			∼ 1 Vcc
RON 900	60 Ø 15	± 0,4"	≤ 100 min ⁻¹	√ 11 μA _{CC}
Pour accouplem	ent d'arbre séparé			
ROD 200	0,10	± 5"	≤ 10 000 min ⁻¹	ПППГ
				ГШП
	42.5 Ø 10			∼ 1 V _{CC}
ROD 700		± 2"	≤ 1000 min ⁻¹	∼1V _{CC}
ROD 800	49 0 14	± 1"	≤ 1000 min ⁻¹	∼1V _{CC}

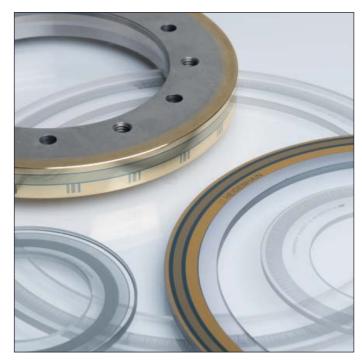
¹⁾ avec interpolation intégrée

Périodes de signal/ tour	Туре	Informations complémen- taires	
18000 ¹⁾	RON 225	Catalogue Systèmes de	
180 000/90 000 ¹⁾	RON 275	mesure angulaire avec roulement	
18000	RON 285	intégré	
18000	RON 287		
18000	RON 785		
18000/36000	RON 786		
36000	RON 886		
180000	RPN 886		
36000	RON 905		
18000 ¹⁾	ROD 220	Catalogue Systèmes de	
180 000 ¹⁾	ROD 270	mesure angulaire avec roulement	
18000	ROD 280	intégré	
18000/36000	ROD 780		
36000	ROD 880		

Principes de mesure

Support de mesure

Les systèmes de mesure HEIDENHAIN utilisent des structures régulières – appelées divisions.


Des substrats en verre ou en acier servent de support à ces divisions : le verre est le plus souvent utilisé sur les systèmes de mesure pour des vitesses de rotation atteignant 10 000 min⁻¹. Pour les vitesses de rotation plus élevées, jusqu'à 20 000 min⁻¹, on utilise des tambours en acier. Sur les systèmes destinés à mesurer de grands diamètres, c'est en revanche un ruban de mesure en acier qui sert de support à la mesure.

Pour obtenir des divisions fines, HEIDEN-HAIN met en œuvre des procédés photolithographiques spéciaux.

- AURODUR: traits dépolis gravés sur un ruban en acier revêtu d'une couche d'or, période de division typique de 40 µm
- METALLUR: division insensible aux salissures, constituée de traits métalliques déposés sur de l'or, avec une période de division typique de 20 µm
- DIADUR: traits en chrome extrêmement résistants (période de division typique de 20 μm) ou structure tridimensionnelle en chrome sur verre (période de division typique de 8 μm)
- Réseau de phases SUPRADUR: structure planaire tridimensionnelle, particulièrement insensible aux salissures, période de division typique de 8 µm voire moins
- Réseau de phases OPTODUR: structure planaire tridimensionnelle avec réflexion particulièrement élevée, période de division typique de 2 µm voire moins

Les périodes de divisions ainsi obtenues sont non seulement d'une grande finesse, mais elles se caractérisent également par une grande netteté et par l'homogénéité des traits qui les composent. Associée au procédé de balayage photoélectrique, cette structure joue un rôle déterminant pour la qualité des signaux de sortie.

La société HEIDENHAIN fabrique ses matrices originales sur des machines de grande précision qu'elle a elle-même construites.

Divisions circulaires pour systèmes de mesure angulaire

Procédé de mesure incrémentale

Dans le cas du **procédé de mesure incrémentale**, la division est constituée d'une structure de réseau régulière. L'information de position est obtenue **par comptage** des incréments (pas de mesure) à partir d'un point zéro qui est librement défini. Une référence absolue restant toutefois nécessaire pour déterminer les positions, le support de mesure est doté d'une piste auxiliaire qui comporte une **marque de référence**. Définie grâce à celle-ci, la position absolue de la règle est associée exactement à un pas de mesure.

Il est donc nécessaire de franchir cette marque de référence pour établir une référence absolue ou retrouver le dernier point de référence utilisé.

Dans le cas le plus défavorable, il faut effectuer une rotation de 360°. Pour faciliter ce "franchissement du point de référence," de nombreux systèmes de mesure HEIDEN-HAIN disposent de **marques de référence** à distances codées: la piste de référence compte alors plusieurs marques plus ou moins espacées les unes des autres. L'électronique consécutive détermine la référence absolue dès le passage sur deux marques de référence voisines – donc après un déplacement angulaire de quelques degrés seulement (voir incrément nominal G dans le tableau).

Les systèmes de mesure avec marques de référence à distances codées portent la lettre "C" derrière leur désignation (p. ex. ERA 4200 C).

Avec les marques de référence à distances codées, la **référence absolue** est calculée par comptage des incréments séparant deux marques de référence et d'après la formule suivante :

$$\alpha_1$$
 = (abs A–sgn A–1) $\times \frac{G}{2}$ + (sgn A–sgn D) $\times \frac{abs M_{RR}}{2}$

avec:

$$A = \frac{2 \times abs M_{RR} - G}{TP}$$

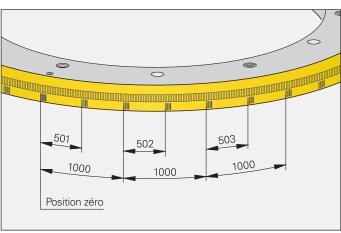
Signification

α₁ = position angulaire absolue en degrés de la première marque de référence franchie par rapport à la position zéro

abs = valeur absolue

sgn = fonction sens (fonction signe = "+1" ou "-1")

M_{RR} = valeur de mesure en degrés entre les marques de référence franchies


 G = incrément nominal entre deux marques de référence fixes (voir tableaux)

TP = période de division ($\frac{360^{\circ}}{\text{nombre de traits}}$)

D = sens de rotation (+1 ou -1)
 La rotation conforme au plan
 d'encombrement donne "+1".

FRA 7480C FRA 8480C

Nombre de traits z	Nombre de marques de référence	Incrément nominal G		
36000 45000	72 90	10° 8°		
90000	180	4°		

Exemple d'une division circulaire avec marques de référence à distances codées (ex. ERA 4480 C avec 20 000 traits)

ERA 4000C

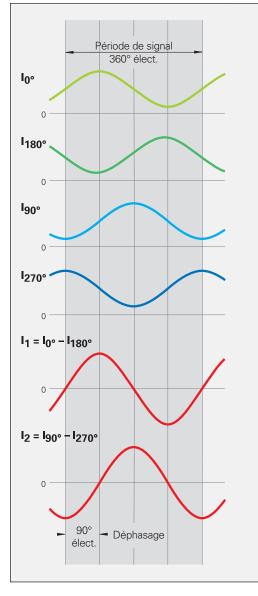
Nb traits 20 µm	avec périod 40 μm	de division 80 µm	Nombre de marques de référence	Incrément nominal G
_	_	3000	6	120°
8192	4096	4096	8	90°
_	_	5000	10	72°
12000	6000	_	12	60°
_	_	7000	14	51,429°
16384	8192	8192	16	45°
20000	10000	10000	20	36°
24000	12000	12000	24	30°
_	_	13000	26	27,692°
28000	14000	_	28	25,714°
32768	16384	_	32	22,5°
40000	20000	_	40	18°
48000	24000	_	48	15°
52000	26000	-	52	13,846°
-	38000	_	76	9,474°
_	44000	_	88	8,182°

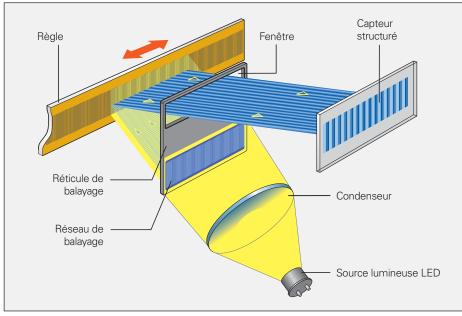
Balayage du support de la mesure

Balayage photoélectrique

La plupart des systèmes de mesure HEIDENHAIN fonctionnent selon le principe de balayage photoélectrique. Il s'agit d'un procédé de balayage sans contact, donc sans usure. Il détecte des traits de divisions extrêmement fins d'une largeur de quelques microns et génère des signaux de sortie de périodes très faibles.

Plus la période de division du support de mesure est fine, plus les effets de la diffraction influent sur le balayage photo-électrique. Pour les systèmes de mesure angulaire, HEIDENHAIN a recours à deux principes de balayage :

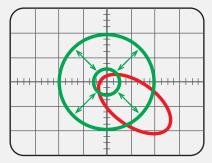

- le principe de mesure par projection pour les périodes de division de 10 μm à env. 70 μm
- le principe de mesure interférentielle pour les réseaux de traits très fins avec des périodes de division de 4 µm voire moins


Principe de mesure par projection

En termes simplifiés, ce principe de mesure fonctionne avec un signal généré par projection de lumière : deux réseaux de traits qui ont, par exemple, la même période de division - disque gradué et réticule de balayage - sont déplacés l'un par rapport à l'autre. Le matériau du réticule de balayage est transparent. La division du support de mesure peut, quant à elle, être déposée sur un matériau transparent ou réfléchissant. Lorsqu'un faisceau lumineux parallèle balaye un réseau de traits, on observe des alternances de champs clairs et de champs foncés. A cet endroit se trouve un réticule opposé qui présente la même période de division. Ainsi, lorsque les deux réseaux de traits se déplacent l'un par rapport à l'autre, la lumière passante est modulée : la lumière passe si les interstices entre les traits se trouvent face à face ; en revanche, elle ne passe pas si les traits recouvrent ces interstices.

Les photoéléments convertissent ces modulations d'intensité lumineuse en signaux électriques. La division spéciale du réticule de balayage filtre alors le flux lumineux de telle façon que les signaux de sortie générés ont une forme presque sinusoïdale. Plus la période de division du réseau de traits est petite, plus la distance entre le réticule de balayage et le disque gradué est faible et plus la tolérance est infime. Avec ce principe, il est possible d'obtenir des tolérances pratiques pour monter les systèmes de mesure dont la période de division est de 10 µm voire plus.

Les systèmes de mesure angulaire ERA fonctionnent p. ex. selon le principe par projection.



Balayage photoélectrique selon le principe de mesure par projection, avec règle en acier et balayage à un seul champ

Le capteur génère quatre signaux de courant de forme sinusoïdale ($I_{0^{\circ}}$, $I_{90^{\circ}}$, $I_{180^{\circ}}$ et $I_{270^{\circ}}$) déphasés entre eux de 90° élect.. Ces signaux de balayage ne sont d'abord pas symétriques par rapport au zéro. Un agencement non parallèle des éléments photoélectriques permet donc d'obtenir deux signaux de sortie I_1 et I_2 déphasés de 90° élect. et symétriques par rapport au zéro.

Une figure de Lissajous est créée avec la représentation XY des signaux dans l'oscilloscope. On obtient un cercle centré si les signaux de sortie sont parfaits. Les erreurs de forme circulaire et de position provoquent des erreurs de position dans une période de signal (voir *Précision de mesure*) et se répercutent ainsi directement sur le résultat de la mesure. La grandeur du cercle – qui correspond à l'amplitude des signaux de sortie – peut varier à l'intérieur de certaines limites sans influencer la précision de la mesure.

Représentation XY des signaux de sortie

Principe de mesure interférentielle

Le principe de mesure interférentielle utilise le phénomène de diffraction et l'interférence de la lumière sur de fins réseaux de divisions pour générer les signaux qui serviront à mesurer le déplacement. C'est un réseau de phases qui sert de support à la mesure : des traits réfléchissants d'une épaisseur de 0,2 µm sont déposés sur une surface plane réfléchissante. Un réticule de balayage est disposé en vis-àvis. Il est constitué d'un réseau de phases transparent dont la période de division est égale à celle de la règle.

Lorsqu'elle passe dans le réticule de balavage. I'onde lumineuse plane est diffractée en trois ondes partielles, dans les ordres de diffraction 1, 0 et -1 avec une intensité lumineuse quasiment identique. Ces ondes partielles sont ensuite diffractées sur la règle (avec réseau de phases) de sorte que l'essentiel de l'intensité lumineuse se situe dans les ordres de diffraction réfléchis 1 et -1. Elles se rejoignent sur le réseau de phases du réticule de balayage où elles subissent une nouvelle diffraction et s'interfèrent. Il en résulte alors trois trains d'ondes qui quittent le réticule de balayage sous des angles différents. Les cellules photoélectriques convertissent ces intensités lumineuses en signaux électriques.

En fonction du type de déplacement entre la règle et le réticule de balayage, les fronts des ondes diffractées subissent un décalage de phase plus ou moins important. Ainsi, lorsque la période de division se décale d'une période, le front d'une onde de l'ordre de diffraction 1 se décale d'une longueur d'onde dans le sens positif, tandis qu'une onde de l'ordre -1 est décalée d'une longueur d'onde dans le sens négatif. Ces deux ondes interférant à la sortie du réseau de phases, elles sont déphasées entre elles de deux longueurs d'onde. Un déplacement relatif d'une période de division revient donc à obtenir deux périodes de signal.

Les systèmes de mesure interférentielle fonctionnent avec des périodes de division moyennes de 4 µm voire moins. Leurs signaux de balayage sont exempts d'harmoniques et peuvent être fortement interpolés. Ils sont particulièrement adaptés à des niveaux élevés de résolution et de précision. Malgré cela, ils se caractérisent par des tolérances de montage faciles à respecter.

Les systèmes de mesure angulaire ERP fonctionnent p. ex. selon le principe interférentiel.

Balayage photoélectrique selon le principe de mesure interférentielle avec balayage à un seul champ

Précision de mesure

La précision de la mesure angulaire dépend en particulier de :

- la qualité de la division
- la stabilité du support de la gravure
- la qualité du balayage
- la qualité de l'électronique de traitement des signaux
- l'excentricité de la division par rapport au roulement
- des erreurs de roulement
- l'accouplement à l'arbre à mesurer

Ces facteurs d'influence regroupent à la fois les facteurs d'erreur propres aux systèmes de mesure et les facteurs propres à l'application. Il faut tenir compte de tous ces facteurs d'influence pour pouvoir évaluer le niveau de précision globale qu'il est possible d'atteindre.

Erreurs spécifiques aux systèmes de mesure

Les erreurs spécifiques aux systèmes de mesure sont indiquées dans les Spécifications techniques.

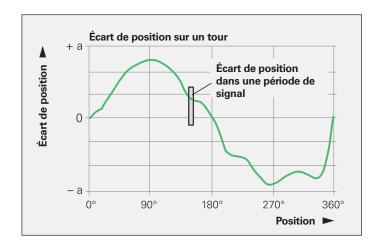
- Précision de la gravure
- Écarts de position dans une période de signal

Précision de la gravure

La précision de la gravure ± a résulte de la qualité de la gravure. Elle dépend :

- de l'homogénéité et la netteté de la période de gravure
- de l'alignement de la gravure sur son support
- sur les systèmes de mesure pourvus d'un support de gravure massif, de la stabilité de celui-ci afin de garantir également la précision à l'issue du montage
- sur les systèmes de mesure avec ruban en acier, des erreurs dues à un ruban qui aura été inégalement tendu au montage, ainsi que des erreurs au niveau du joint du ruban pour les versions cercle entier

Pour calculer la précision de la gravure ± a dans des conditions idéales, il faut mesurer, avec une tête captrice en série, les écarts de position aux positions qui correspondent à des multiples entiers de la période de signal.


Écarts de position dans une période de signal

Les écarts de position dans une période de signal ± u résultent de la qualité du balayage et – pour les systèmes de mesure avec électronique intégrée de comptage/ mise en forme des impulsions – de la qualité de l'électronique de traitement des signaux. Sur les systèmes de mesure délivrant des signaux de sortie sinusoïdaux, c'est en revanche l'électronique consécutive qui influence les erreurs de l'électronique de traitement des signaux.

Les facteurs qui déterminent la qualité du résultat sont les suivants :

- la finesse de la période de signal
- l'homogénéité et la netteté de la période de gravure
- la qualité des structures de filtre du balayage
- les caractéristiques des détecteurs
- la stabilité et la dynamique du traitement des signaux analogiques

Ces facteurs d'influence sont pris en compte dans les erreurs de position survenant dans une période de signal.

Les erreurs de position dans une période de signal ± u sont indiquées en pourcentage de la période de signal. Sur les systèmes de mesure angulaire à encastrer sans roulement, cette valeur est généralement inférieure à ± 1 % de la période de signal (ERP 880 : ± 1,5 %). Pour connaître les valeurs spécifiques, se référer aux Spécifications techniques.

Les erreurs de position dans une période de signal se répercutent sur les déplacements angulaires aussi petits soient-ils ainsi que sur les mesures répétées. Elles entraînent des variations de vitesse, notamment dans la boucle d'asservissement de vitesse.

Erreurs propres à l'application

En ce qui concerne les systèmes de mesure sans roulement, le montage et le réglage de la tête captrice ont une incidence cruciale sur la précision totale souhaitée, en plus des erreurs spécifiques au système. Le montage excentrique de la gravure et les défauts de concentricité de l'arbre à mesurer jouent notamment un rôle capital. Pour pouvoir juger de la précision globale, il est primordial de déterminer et de prendre en compte les erreurs propres à l'application.

En revanche, la précision indiquée pour les systèmes de mesure avec roulement intégré tient déjà compte des écarts du roulement et de l'accouplement sur l'arbre (voir catalogue *Systèmes de mesure angulaire avec roulement intégré*).

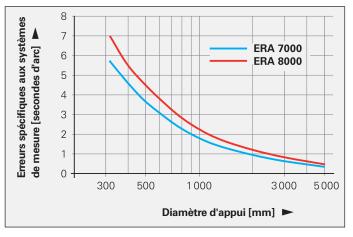
Erreurs dues à l'excentricité de la gravure par rapport au roulement

En montant le disque gradué avec moyeu, le tambour gradué ou le ruban de mesure en acier, il se peut que la gravure soit excentrée par rapport au roulement. Qui plus est, les écarts dimensionnels et de forme de l'arbre client peuvent accroître l'excentricité. Le rapport entre l'excentricité e, le diamètre de la gravure D et l'écart de mesure Δφ est le suivant (cf. figure ci-dessous) :

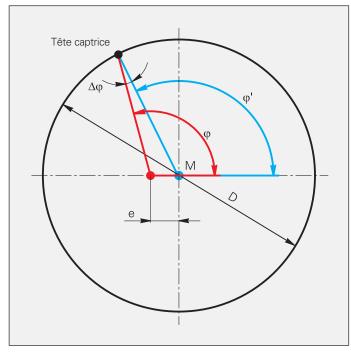
$$\Delta \varphi = \pm 412 \cdot \frac{e}{D}$$

 $\Delta \phi = \text{écart de mesure en " (secondes d'arc)}$

e = excentricité du tambour gradué par rapport au roulement en μm (1/2 rotation)

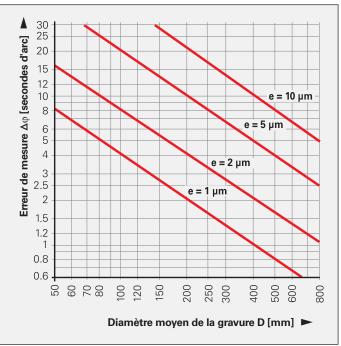

D = diamètre moyen de la gravure en mm

M = centre de la gravure


φ = angle "vrai"

 $\varphi' = angle lu$

Écarts spécifiques aux systèmes de mesure des séries ERA 7000 et ERA 8000


Excentricité de la gravure par rapport au roulement

Diamètre moyen de la gravure D

ERP 880	D = 126 mm
ERP 4000	D = 40 mm
ERP 8000	D = 104 mm
ERO 6000	D = 64 ou 142 mm
ERO 6100	D = 64 mm
ERA 4000	D ≙ diamètre extérieur du
	tambour
ERA 7000	D ≙ diamètre d'appui du
ERA 8000	ruban de mesure

Erreurs de mesure résultantes $\Delta \phi$ avec différentes excentricités e en fonction du diamètre moyen de la gravure D

Défaut de concentricité du roulement

Le rapport qui existe pour l'écart de mesure $\Delta \phi$ s'applique également à l'écart de concentricité du roulement si e a pour valeur l'excentricité, soit la moitié de l'erreur de concentricité (moitié de la valeur d'affichage). L'élasticité du roulement sous l'action d'une charge radiale de l'arbre provoque des erreurs de même nature.

Déformation de la gravure liée au montage

En ce qui concerne les tambours et les cercles gradués avec moyeu, les sections, les surfaces de référence, la position de la division par rapport à la surface de montage, les trous de fixation, etc. sont conçus de telle sorte que la précision des systèmes ne soit influencée que de façon marginale par le montage et le fonctionnement.

Écarts dimensionnels et de forme de la surface de montage (sur les séries ERA 7000 et ERA 8000)

Les écarts de forme de la surface de montage peuvent influencer la précision globale susceptible d'être atteinte.

Pour les versions destinées aux segments de cercle, on constate des erreurs angulaires supplémentaires $\Delta \phi$ si le diamètre nominal d'appui du ruban n'est pas respecté avec précision :

$$\Delta \phi = (1 - D'/D) \cdot \phi \cdot 3600$$

avec

 $\Delta \phi$ = erreur du segment, en secondes d'arc

 φ = angle du segment en degrés

D = diamètre nominal d'appui du ruban

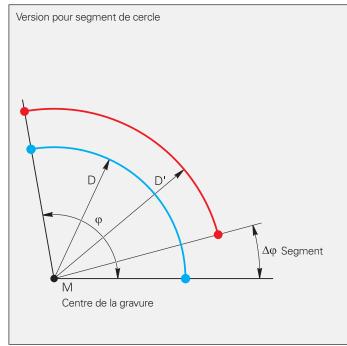
D' = diamètre réel d'appui du ruban

Pour éliminer cette erreur, il suffit d'introduire dans la commande numérique le nombre de traits z' sur 360° correspondant au diamètre d'appui effectif du ruban D'. Nous avons la relation suivante :

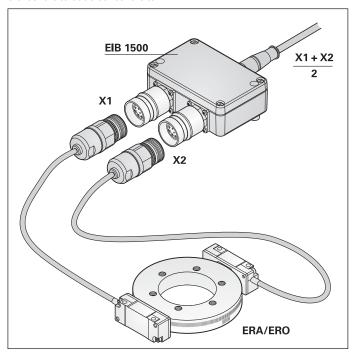
$z' = z \cdot D'/D$

avec z = nombre nominal de traits sur 360° z' = nombre effectif de traits sur 360°

Sur les versions pour segments de cercle, il est conseillé en principe de vérifier l'angle réel parcouru à l'aide d'un système de mesure par comparaison, p. ex. un système de mesure angulaire avec roulement.


Possibilités de compensation

Le montage excentrique de la gravure ainsi que les erreurs de concentricité de l'arbre à mesurer sont à l'origine de la plupart des erreurs propres aux applications. Une méthode courante pour résoudre ce type de problème consiste à monter deux ou plusieurs têtes captrices autour du support de la gravure en les répartissant de manière équidistante. L'électronique consécutive se base alors sur les différentes valeurs de position pour n'en délivrer qu'une seule.


Avec l'EIB 1500, HEIDENHAIN propose une électronique capable de calculer en temps réel la position de deux têtes captrices sans la moindre répercussion négative sur la boucle d'asservissement (voir Électroniques d'exploitation et d'affichage).

Dans la pratique, l'amélioration effective du degré de précision dépend en grande partie de la situation de montage et de l'application. En principe, on élimine toutes les erreurs d'excentricité (erreurs reproductibles dues à des défauts de montage, erreurs non reproductibles dues à des erreurs de concentricité du roulement) ainsi que toutes les harmoniques impaires de l'erreur de division.

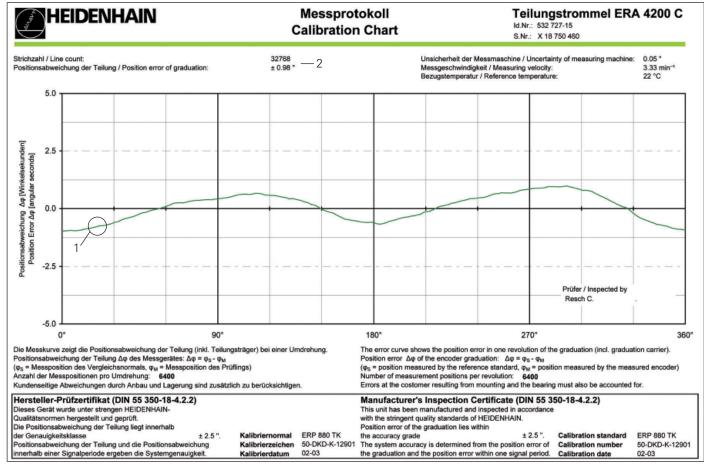
Erreur angulaire due à une variation du diamètre d'appui du ruban

Calcul de la position de deux têtes captrices pour compenser les erreurs d'excentricité et de concentricité

Procès-verbal de mesure

Pour les systèmes de mesure angulaire ERP, ERO et ERA 4000, HEIDENHAIN établit un procès-verbal de mesure joint à l'appareil.

Le **procès-verbal de mesure** documente la précision de la division, ainsi que le support de la gravure. La précision de la division est déterminée avec une multitude de points de mesure sur un tour. Toutes les valeurs de mesure sont dans les limites de la précision de division qui figure dans les Spécifications techniques.


Les erreurs sont déterminées à température constante (22 °C) et spécifiées dans le procès-verbal lors du contrôle final.

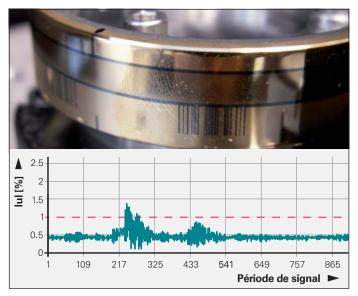
Le certificat de contrôle qualité mentionne l'étalon de référence pour fournir un repère par rapport aux standards nationaux et internationaux reconnus et pour assurer une traçabilité.

Les erreurs relevant du montage et les erreurs de position dans une période de signal ne sont pas prises en compte dans les valeurs de précision figurant sur le procèsverbal de mesure. Les systèmes de mesure angulaire sans roulement qui sont pourvus d'un support de division massif sont étalonnés chez HEIDENHAIN dans les mêmes conditions de montage que celles de leur application utlérieure. Cela permet de garantir sur la machine la même précision que celle constatée chez HEIDENHAIN.

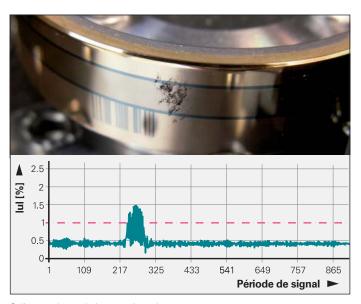
Procès-verbal de mesure prenant pour exemple le tambour gradué ERA 4200 C

- 1 Représentation graphique de la précision de la gravure
- 2 Résultat de l'étalonnage

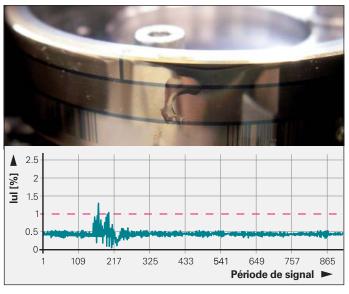
Fiabilité


Les systèmes de mesure angulaire sans roulement HEIDENHAIN sont optimisés pour équiper les machines précises et rapides. Malgré leur conception ouverte, ils sont peu sensibles aux salissures, garantissent une grande stabilité à long terme et sont faciles et rapides à monter.

Faible sensibilité aux salissures

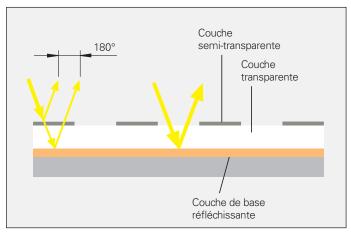

Outre l'excellente qualité du réseau de divisions, le procédé de balayage agit directement sur la précision et la fiabilité des systèmes de mesure. Les systèmes de mesure HEIDENHAIN fonctionnent avec un balayage à un seul champ. Les signaux sont générés à partir d'un seul champ de balayage. Les salissures locales sur le support de mesure (traces de doigt, résidus graisseux, etc.) agissent aussi bien sur l'intensité lumineuse des composantes du signal que sur les signaux de balayage. L'amplitude des signaux de sortie est certes modifiée, par contre l'offset et le déphasage ne varient pas. Les signaux de sortie peuvent toujours être fortement interpolés, avec des écarts de position restant faibles à l'intérieur d'une période de signal.

De plus, le **champ de balayage de grande dimension** réduit la sensibilité aux salissures. Un dysfonctionnement du système de mesure peut également être évité en cas de salissure. Les signaux créés sont de grande qualité, même en présence de salissures de 3 mm de diamètre (toner d'imprimante, poussières, eau ou huile). Les erreurs de position sur un tour restent bien en dessous de la précision spécifiée.


Les relevés figurant ci-contre indiquent les résultats des tests de salissures sur un ERA 4000. Les valeurs maximales de l'erreur de position sont représentées dans une période de signal |u|. La valeur spécifique de ± 1 % n'est que faiblement dépassée malgré l'importance des salissures.

Salissure due à des traces de doigts

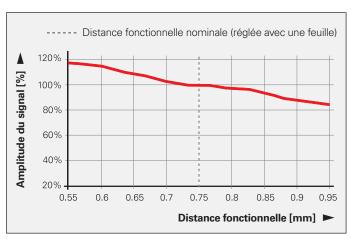
Salissure due à de la poussière de toner


Salissure due à des gouttes d'eau

Supports de mesure résistants

Les systèmes de mesure angulaire sans roulement sont pourvus d'un support de mesure qui, de par sa conception ouverte, est soumis à d'importantes sollicitations. HEIDENHAIN utilise donc en général des réseaux de divisions robustes réalisés avec des procédés spéciaux.

Dans le cas du procédé DIADUR, les structures en chrome dur sont déposées sur un support en verre ou en acier.


Pour le procédé METALLUR, une couche réfléchissante en or est pourvue d'une fine couche intermédiaire en verre. Celle-ci est recouverte d'un réseau de traits en chrome absorbant, d'une épaisseur de quelques nanomètres seulement, donc semi-transparents. Les supports avec division METALLUR s'avèrent particulièrement robustes et insensibles aux salissures, car la faible hauteur des structures empêche pratiquement toute accumulation de poussières, de saletés ou de particules d'humidité.

Structure d'une division METALLUR

Tolérances de montage pratiques

Les tolérances de montage des systèmes de mesure angulaire sans roulement HEIDEN-HAIN n'agissent que très faiblement sur les signaux de sortie. Il est à noter que les fluctuations de la distance fonctionnelle entre le support de la division et la tête captrice ne modifient que légèrement l'amplitude du signal. Les erreurs de position dans une période de signal sont quasiment insignifiantes. Ce comportement est crucial pour la grande fiabilité des systèmes de mesure angulaire HEIDENHAIN.

Influence de la distance fonctionnelle sur l'amplitude du signal du ERA 4000 $\,$

Structures mécaniques et montage

Informations générales

Les systèmes de mesure angulaire sans roulement se composent d'une tête captrice et d'un support de division. Le support de division peut correspondre à un ruban de mesure ou se présenter sous une forme massive (tambour gradué, disque gradué avec moyeu). Les composants sont guidés les uns par rapport aux autres essentiellement au moyen du guidage de la machine. Par conséquent, certaines conditions particulières sont à respecter lors de la conception de la machine:

- Le montage doit être conçu de manière à satisfaire - également pendant le service - aux exigences de précision de l'axe et aux tolérances fonctionnelles du système de mesure (voir Spécifications techniques).
- La surface de montage du support de division doit respecter les exigences de planéité, de circularité, de concentricité et de diamètre des différents systèmes de mesure.
- Pour simplifier le réglage de la tête captrice par rapport à la division, la tête doit être fixée au moyen d'une équerre de montage ou de butées correspondantes.

Tous les systèmes de mesure angulaire sans roulement qui sont dotés d'un support de division massif sont conçus de sorte que la précision spécifiée puisse être effectivement atteinte dans le cadre de l'application. Type de montage et concept de montage garantissent la meilleure reproductibilité possible.

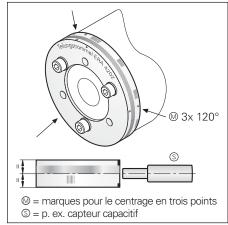
Centrage de la division

Les divisions HEIDENHAIN étant ultraprécises, ce sont les erreurs de montage (essentiellement l'erreur d'excentricité) qui jouent surtout sur la précision globale. Dans la pratique, il existe différentes possibilités de centrage – en fonction du système et de la méthode de montage – pour minimiser l'erreur d'excentricité.

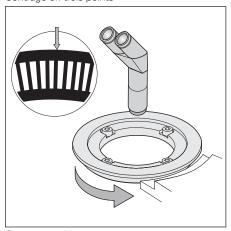
1. Collerette de centrage

Le support de la division est fretté ou glissé sur un arbre. Cette méthode simple demande toutefois une géométrie très précise de l'arbre.

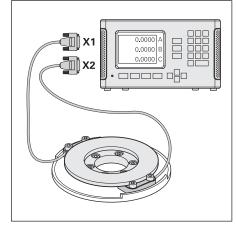
2. Centrage en trois points

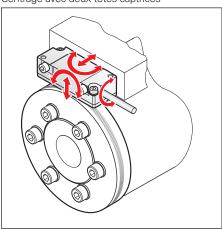

Le support de la division est centré au moyen de trois positions décalées de 120° qui sont marquées sur le support de la division. Une éventuelle erreur de circularité de la surface de centrage n'influence pas le réglage précis du centre de l'axe.

3. Centrage optique


Les supports de division en verre sont fréquemment centrés à l'aide d'un microscope. Des arêtes de référence ou cercles de centrage précis sont rapportés sur les supports de division.

4. Centrage avec deux têtes captrices

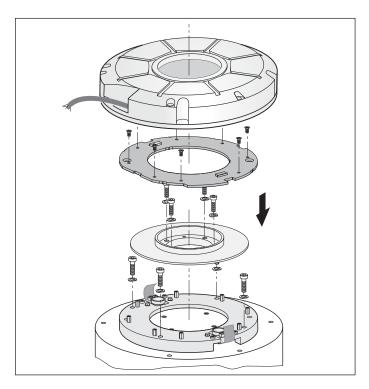

Cette méthode convient à tous les systèmes de mesure angulaire sans roulement qui sont pourvus d'un support de division massif. Comme les divisions HEIDENHAIN présentent dans l'ensemble une caractéristique d'erreur de grande longueur d'onde, et que la division ou encore la valeur de position sert de référence, cette méthode de centrage est la plus précise de toutes.


Centrage en trois points

Centrage optique

Centrage avec deux têtes captrices

Têtes captrices


Le système de mesure angulaire sans roulement étant installé sur la machine, il est impératif que la tête captrice soit ajustée avec grande précision à l'issue du montage du support de division. La tête captrice doit être réglable dans cinq axes pour pouvoir être ajustée avec précision (voir figure). La conception des têtes captrices, leurs procédés de montage ainsi que les grandes tolérances de montage simplifient considérablement les réglages. Les systèmes ERA, par exemple, ne demandent au montage qu'un simple ajustage de la distance fonctionnelle à l'aide d'une feuille de réglage

ERP 880

Le système de mesure angulaire encastrable ERP 880 est constitué d'une unité de balayage, d'un disque gradué avec moyeu et d'une platine. Pour le protéger contre les contacts accidentels ou les salissures, des capots sont proposés en accessoires.

Montage ERP 880

L'unité de balayage est tout d'abord montée sur un élément fixe de la machine et alignée à \pm 1,5 μ m sur l'arbre à mesurer. Le disque gradué avec son moyeu est ensuite vissé sur la face frontale de l'arbre et ajusté par rapport à l'unité de balayage en respectant une excentricité maximale de \pm 1,5 μ m. Pour terminer, la platine est installée et connectée à l'unité de balayage. Le réglage précis s'effectue par "centrage électronique" à l'aide du PWM 9 (voir Équipements de contrôle HEIDENHAIN) et d'un oscilloscope. Un capot peut être monté sur le système de mesure ERP 880 pour le protéger des salissures.

Montage de l'ERP 880 (principe)

Capot IP40

avec capot pour protection IP40 Câble 1 m avec prise d'accouplement (mâle) 12 plots ID 369774-01

Capot IP64

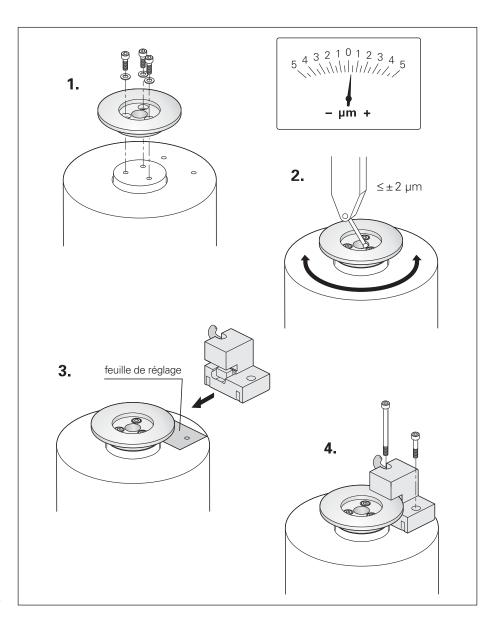
avec joint d'étanchéité d'arbre pour protetion IP64 Câble 1 m avec prise d'accouplement (mâle) 12 plots ID 369774-02

Structures mécaniques et montage

ERP 4080/ERP 8080

Les systèmes de mesure à encastrer ERP 4080 et ERP 8080 sont prévus pour des applications exigeant une haute précision et une résolution maximale. Ils fonctionnent suivant le principe de balayage interférentiel d'un réseau de phases. Ils se composent d'une tête captrice et d'un disque gradué avec moyeu.

Calcul de la cote de montage axiale


Pour obtenir la précision la plus élevée possible, il faut veiller à ce que l'erreur de battement de l'arbre et celle du disque gradué avec son moyeu ne se cumulent pas. Les positions de l'erreur de battement maximale et minimale du moyeu sont marquées. L'erreur de battement de l'arbre doit être mesurée pour déterminer la position maximale et minimale. Le disque gradué est ensuite monté avec le moyeu de telle sorte que l'erreur résiduelle de battement soit réduite au maximum.

Montage du disque gradué avec moyeu

Le disque gradué avec moyeu est glissé sur l'arbre moteur, centré sur le diamètre interne du moyeu et fixé par des vis. Le disque gradué peut être centré sur le diamètre intérieur du moyeu avec un comparateur. Le centrage peut être optique au moyen du cercle de centrage présent sur le disque gradué, ou électrique en utilisant deux têtes caprices montées diamétralement opposées.

Montage de la tête captrice

A l'aide de deux vis (ou de l'outil de montage) et des feuilles de réglage appropriées, la tête captrice est fixée sur la surface de montage de manière à pouvoir se déplacer. Elle est "ajustée électroniquement" à l'aide du PWM 9 ou du PWT 18 (voir *Kits de diagnostic HEIDENHAIN*). La tête captrice se règle en jouant sur sa position à l'intérieur des trous de fixation jusqu'à ce que les signaux de sortie atteignent une amplitude de \geq 0,9 V_{CC}.

Accessoires

Outil de montage

pour régler la tête captrice ID 622976-02

Adaptateur pour palpeur de mesure

pour mesurer les tolérances de montage ID 627142-01

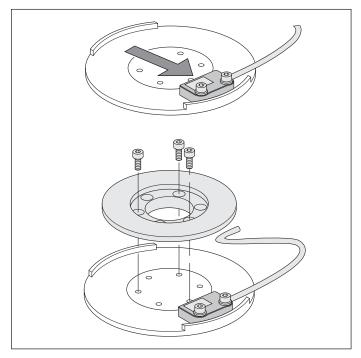
Feuilles de réglage

pour régler la distance fonctionnelle				
ID 619943-01				
ID 619943-02				
ID 619943-03				
ID 619943-04				
ID 619943-05				
ID 619943-06				
ID 619943-07				
ID 619943-08				
ID 619943-09				
ID 619943-10				

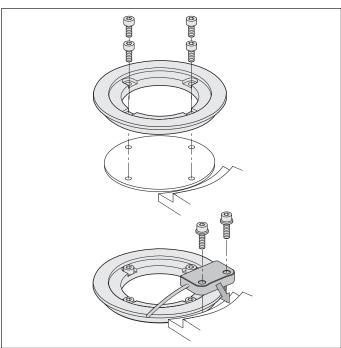
Jeu complet (un exemplaire de chaque feuille de 10 µm à 100 µm) : ID 619943-11

ERO 6000, ERO 6100

Les systèmes de mesure angulaire à encastrer ERO 6000 et ERO 6100 sont composés d'une tête captrice et d'un disque gradué avec moyeu. Ces composants sont positionnés et ajustés les uns par rapport aux autres sur la machine.


Montage ERO 6000

Une surface d'appui, côté client, d'un diamètre intérieur défini est conseillée pour monter facilement la tête captrice. Celle-ci est appliquée sur la surface de montage, et fixée avec deux vis. Un réglage supplémentaire est ainsi inutile. Le disque gradué (avec son moyeu) est ensuite fixé avec des vis sur la face frontale de l'arbre où il est centré soit électriquement, soit mécaniquement en trois points. La distance fonctionnelle entre la tête captrice et le disque gradué est déjà définie par la surface de montage – là également, pas de réglage supplémentaire.


Montage ERO 6100

Le disque gradué avec son moyeu est monté sur l'arbre et fait l'objet d'un centrage optique. Pour monter facilement la tête captrice, il est conseillé d'utiliser une équerre de montage pouvant être réglée dans le sens axial et présentant une arrête d'appui d'un diamètre intérieur défini. La tête captrice est positionnée contre la surface d'appui de l'équerre de montage, et fixée par deux vis. La distance fonctionnelle entre la tête captrice et le disque gradué est réglée avec la feuille de réglage, puis l'équerre de montage est fixée.

Les signaux de sortie sont contrôlés avec le PWT. Le boîtier électronique APE 381 est nécessaire pour les ERO 6x80 (voir *Outils de contrôle HEIDENHAIN*).

Montage ERO 6000

Montage ERO 6100

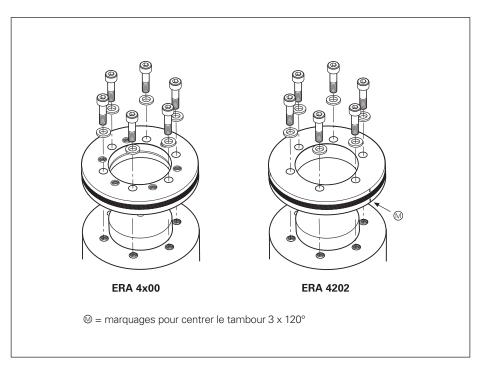
Structures mécaniques et montage

Série ERA 4000

Les systèmes de mesure angulaire à encastrer ERA 4000 se composent d'un tambour gradué et d'une tête captrice.

Les têtes captrices de la série ERA 4000 présentent la particularité d'être très compactes. Les tambours gradués des ERA 4000 sont livrables dans différentes versions correspondant chacune à une application donnée. La version ERA 4x80 est disponible avec plusieurs périodes de division en fonction de la précision requise. Les différentes têtes captrices sont indiquées dans le tableau ci-contre. Des mesures particulières doivent être mises en œuvre pour protéger les ERA des salissures. Pour certains diamètres de tambour, les ERA 4480 sont aussi livrables avec un boîtier de pressurisation. Pour cela, une tête captrice spéciale (avec raccordement d'air comprimé) est nécessaire. Le boîtier de pressurisation correspondant au diamètre du tambour est à commander séparément.

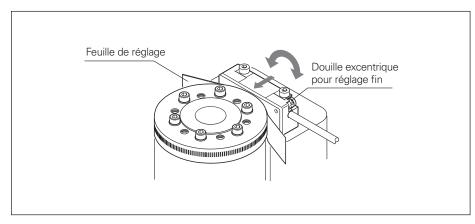
Les systèmes de mesure angulaire à en-
castrer ERA sont conçus pour être montés
rapidement sans réglages complexes.


Montage du tambour gradué ERA 4x00

Le tambour gradué est glissé sur l'arbre moteur, fixé avec des vis et centré par une collerette située sur le diamètre intérieur du tambour. Il est donc inutile de régler le tambour. HEIDENHAIN recommande une légère surépaisseur de l'arbre pour pouvoir monter le tambour gradué. Il est possible de chauffer progressivement le tambour gradué jusqu'à 100 °C max. sur une plaque chauffante (pendant 10 min environ) avant de le monter.

Montage du tambour gradué ERA 4202

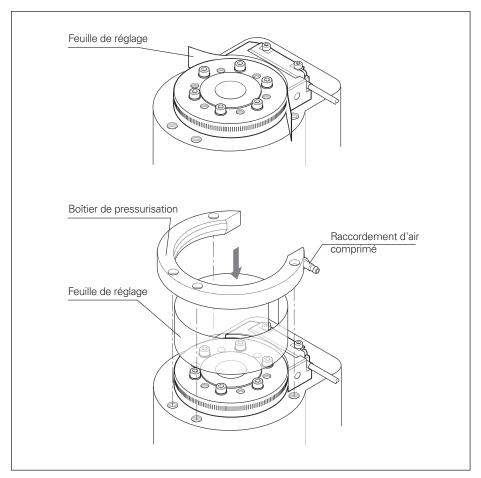
Le tambour gradué est centré au moyen de trois positions décalées de 120° sur le diamètre extérieur, et fixé par des vis. Les avantages du centrage en trois points et la structure massive du tambour permettent d'atteindre à l'issue du montage une précision très élevée sans avoir à effectuer de longs réglages. Les positions destinées au centrage sont marquées sur le tambour gradué.


Application	Tambour gradué	Périodes de division	Туре	Tête adaptée
Vitesses de rotation élevées	Collerette centrage	20 µm	ERA 4200	ERA 4280
		40 µm	ERA 4400	ERA 4480
		80 µm	ERA 4800	ERA 4880
Grandes précisions requises et vitesses de rotation élevées	Centrage en trois points	20 µm	ERA 4202	ERA 4280

Montage des tambours gradués

Montage de la tête captrice

Pour monter la tête captrice, la feuille de réglage est placée à la circonférence du tambour gradué. La tête captrice y est appliquée, puis vissée ; la feuille de réglage est ensuite retirée. Sur les systèmes de mesure ERA 4000 d'une période de division de 20 µm, on peut en outre effectuer un réglage fin du champ de balayage au moyen d'une douille excentrique.



Montage de la tête captrice

Montage du boîtier de pressurisation

Pour certains diamètres, les systèmes de mesure angulaire à encastrer ERA 4480 sont livrables avec un boîtier de pressurisation. On accroît la protection contre les salissures en y injectant de l'air comprimé.

Le tambour gradué et la tête captrice sont montés comme indiqué précédemment. La feuille de réglage fournie spécialement avec le boîtier de pressurisation est posée autour du tambour gradué. Elle protège le tambour gradué pendant le montage du boîtier de pressurisation, et garantit un écart constant. Pour terminer, le boîtier de pressurisation est glissé pour recouvrir le tambour. Après fixation, la feuille de réglage est retirée. Remarques sur le raccordement d'air comprimé : voir *Informations mécaniques d'ordre général*.

Montage d'un ERA 4480 avec boîtier de pressurisation

Structures mécaniques et montage

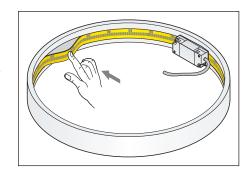
Séries ERA 7000 et ERA 8000

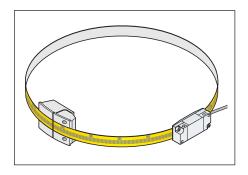
Les systèmes de mesure angulaire des séries ERA 7000 et ERA 8000 se composent d'une tête captrice et d'un ruban de mesure monobloc en acier qui sert de support à la gravure. Ce ruban en acier est livrable dans des longueurs jusqu'à 30 m. La fixation s'effectue

- pour la série ERA 7000, sur le diamètre intérieur
- pour la série ERA 8000, sur le **diamètre** extérieur

d'un élément de la machine.

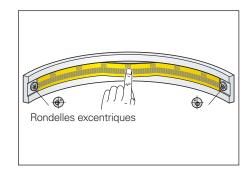
Les systèmes de mesure angulaire ERA 74x0 C et ERA 84x0 C sont destinés à des **applications sur cercle entier**. Ils conviennent donc tout particulièrement aux arbres creux de grand diamètre intérieur (à partir de 400 mm environ) et aux applications qui requièrent une mesure précise sur une grande circonférence – p. ex. les grands plateaux circulaires et les télescopes.

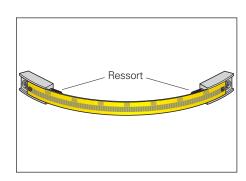

Pour les applications qui exigent de mesurer un simple segment de cercle, il existe des **versions segments de cercle**.


Montage du ruban de mesure pour les applications sur cercle entier

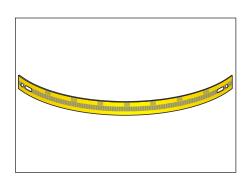
ERA 74x0 C: une **rainure intérieure** d'un diamètre défini est nécessaire pour monter le ruban de mesure. Celui-ci est appliqué à partir du point de jonction, puis comprimé dans la rainure. Sa longueur est telle qu'il se maintient de lui-même dans la rainure.

ERA 84x0 C: le ruban de mesure est livré avec des tendeurs pré-montés aux extrémités. Une **rainure extérieure** et un évidement pour le tendeur sont nécessaires au montage. Une fois inséré dans la rainure, le ruban de mesure est amené en butée à l'aide du tendeur.


Grâce à un usinage précis des deux extrémités du ruban, on ne constate pratiquement aucun écart angulaire et aucune altération de la forme des signaux au point de jonction. Le ruban est fixé ponctuellement avec de la colle à proximité de la jonction pour éviter qu'il ne glisse dans la rainure.



Montage du ruban de mesure sur les versions pour segments de cercle


ERA 74x1 C : une rainure intérieure d'un diamètre donné est nécessaire pour loger le ruban. Les deux rondelles excentriques montées dans la rainure sont réglées de telle manière que le ruban de mesure sous tension se maintient de lui-même dans la rainure.

ERA 84x1 C: le ruban de mesure est livré avec les deux embouts pré-montés. Pour monter le ruban, il faut une rainure extérieure avec des évidements destinés aux embouts. Ces derniers sont pourvus de ressorts de tension qui servent à optimiser la précontrainte du ruban de mesure et à répartir uniformément la tension sur la longueur du ruban.

ERA 84x2 C : une rainure extérieure ou une butée axiale d'un côté est conseillée pour recevoir le ruban de mesure. Le ruban est livré sans tendeurs. Pour monter le ruban, il faut le précontraindre avec une balance à ressort et le visser en se servant des deux trous oblongs.

Calcul du diamètre d'appui

La circonférence doit être un multiple de 1000 périodes de division pour garantir la fonction des marques de référence à distances codées. La relation entre le diamètre d'appui et le nombre de traits figure dans le tableau ci-contre.

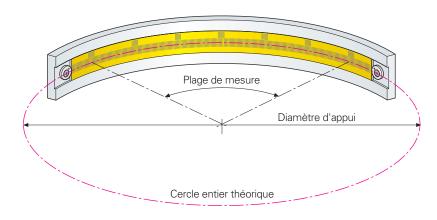
Définition de l'angle du segment

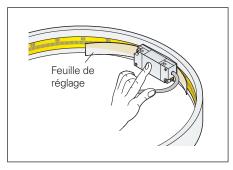
Sur les versions mesurant un segment de cercle, l'angle servant de plage de mesure doit être un multiple de 1000 périodes de division. De même, la circonférence du cercle entier théorique doit correspondre à un multiple de 1000 périodes de division, car cela simplifie souvent l'adaptation à la commande CN.

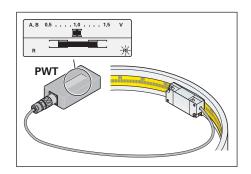
Montage de la tête captrice

Pour monter la tête captrice, la feuille de réglage est posée à la circonférence du tambour gradué. La tête captrice y est appliquée, puis vissée ; la feuille de réglage est ensuite retirée. Le champ de balayage peut être réglé avec précision au moyen d'une douille excentrique.

Contrôle des signaux de sortie à la jonction du ruban de mesure


Il faut contrôler les signaux de sortie à la jonction du ruban de mesure – avant même le durcissement de la colle – afin de s'assurer que le ruban des ERA 74x0 C et ERA 84x0 C a été monté correctement.


Le phasemètre PWT de HEIDENHAIN sert à contrôler les signaux de sortie. Tandis que la tête captrice longe le ruban de mesure, le PWT permet de visualiser la qualité des signaux ainsi que la position des marques de référence.


Le phasemètre PWM 9 affiche quantitativement les écarts des signaux de sortie par rapport au signal idéal (voir *Outils de mesure HEIDENHAIN*).

	Diamètre d'appui en mm	Plage de mesure en degrés des versions pour segments de cercle
ERA 7000C	n · 0,01273112 +0,3	n ₁ · 4,583204 : (D–0,3)
ERA 8000C	n · 0,0127337 -0,3	n ₁ · 4,584121 : (D+0,3)

n= nombre de traits sur le cercle entier ; $n_1=$ nombre de traits sur la plage de mesure D= diamètre d'appui [mm]

Informations mécaniques d'ordre général

Indice de protection

Sur les systèmes de mesure angulaire **sans roulement**, la protection requise contre les salissures et les contacts accidentels doit être assurée par du matériel adapté (joints en labyrinthe, par exemple) qui sera à installer au moment du montage.

Sauf indication contraire, tous les systèmes de mesure angulaire **avec roulement** RCN, RON, RPN et ROD sont conformes à l'indice de protection IP67 selon EN 60 529 ou IEC 60 529 pour le boîtier et la sortie du câble ou IP64 pour l'entrée de l'arbre.

Certaines versions des systèmes de mesure angulaire ERA 4480 dont le tambour peut atteindre un diamètre intérieur de 180 mm sont livrables en option avec un anneau de protection pour pressurisation. L'injection d'air légèrement comprimé permet d'améliorer la protection de ces systèmes contre les salissures.

L'air comprimé injecté directement dans les systèmes de mesure doit être purifié dans un microfiltre et être conforme aux classes de qualité suivantes selon **ISO 8573-1** (édition 2010) :

- impuretés solides : classe 1 taille et nombre de particules par m³
 0,1 µm à 0,5 µm ≤ 20 000
 0,5 µm à 1,0 µm ≤ 400
 1,0 µm à 5,0 µm ≤ 10
- point de rosée sous pression max. : classe 4

(point de rosée à 3 °C)

 teneur totale en huile : classe 1 (concentration max. en huile 0,01 mg/m³)

Le débit d'air nécessaire à la pressurisation optimale d'un système de mesure angulaire avec roulement doit être de 1 à 4 l/min. L'idéal est d'utiliser des raccords HEIDEN-HAIN avec réducteur intégré (voir *Accessoires*) pour réguler le débit d'air. Les réducteurs garantissent le débit d'air requis avec une pression à l'entrée d'environ $1 \cdot 10^5$ Pa (1 bar).

Accessoires:

Dispositif de pressurisation DA 400 ID 894602-01

DA 400

Pour purifier l'air comprimé, HEIDENHAIN propose le dispositif de filtrage DA 400. Celui-ci est conçu spécialement pour raccorder l'air comprimé aux systèmes de mesure.

Le DA 400 comprend trois niveaux de filtrage (préfiltre, filtre fin et filtre au charbon actif) ainsi qu'un pressostat avec manomètre. Le manomètre et le pressostat (disponibles comme accessoires) assurent un contrôle efficace de l'air pressurisé.

En matière d'impuretés, l'air comprimé injecté dans le DA 400 doit être conforme aux classes de qualité suivantes, selon ISO 8573-1 (édition 2010) :

• impuretés solides : **classe 5** taille et nombre de particules par ³

0,1 μ m à 0,5 μ m non spécifié 0,5 μ m à 1,0 μ m non spécifié 1,0 μ m à 5,0 μ m ≤ 100 000

point de rosée sous pression max. :
 classe 6

(point de rosée à 10 °C)

• teneur totale en huile : **classe 4** (concentration max. en huile 5 mg/m³)

Composants nécessaires pour raccorder les systèmes de mesure angulaire :

raccord droit

avec réducteur et joint ID 226270-xx

raccord droit, court

avec réducteur et joint ID 275239-xx

raccord à vis M5 orientable

avec joint ID 207834-xx

Pour de plus amples informations, consulter l'information produit *DA 400*.

Plage de température

Les systèmes de mesure angulaire sont contrôlés à une **température de référence** de 22 °C. La précision du système indiquée sur le procès-verbal de mesure est valable à cette température.

La plage de température de service indique les limites de température ambiante à l'intérieur desquelles fonctionnent les systèmes de mesure angulaire.

La **plage de température de stockage** de –30 à 80 °C est valable pour l'appareil dans son emballage (ERP 4080/ERP 8080 : 0 à 60 °C).

Protection contre les contacts accidentels

Au terme du montage, les pièces en rotation doivent être suffisamment protégées pour éviter tout contact accidentel.

Accélérations

Pendant le montage et le service, les systèmes de mesure angulaire sont soumis à différents types d'accélérations.

- Les valeurs limites de résistance aux vibrations sont conformes à la norme EN 60 068-2-6.
- Les valeurs d'accélération maximales admissibles (choc semi-sinusoïdal) spécifiées pour la résistance aux chocs et collisions sont valables pour une durée de 6 ms (EN 60 068-2-27).
 L'utilisation d'un maillet ou de tout autre outil similaire, pour p. ex. ajuster le système de mesure, est à proscrire.

Vitesses de rotation

Les vitesses de rotation max. des systèmes de mesure angulaire de la série ERA 4000 ont été définies conformément à la directive FKM. Reflet de l'état actuel de la technique, cette directive permet d'évaluer la résistance des composants en tenant compte de tous les facteurs pertinents. Les exigences en matière de résistance (10' cycles d'effort) sont prises en compte dans le calcul des vitesses de rotation admissibles. Le montage jouant un rôle essentiel, il est impératif de respecter toutes les données et consignes figurant dans les Spécifications techniques et les instructions de montage afin de garantir la validité de la vitesse de rotation.

Pièces d'usure

Les systèmes de mesure HEIDENHAIN sont conçus pour une longue durée de vie. Une maintenance préventive n'est pas nécessaire. Néanmoins, ces systèmes comportent des composants soumis à une usure qui dépend de l'utilisation et de la manipulation. C'est le cas notamment des câbles soumis à une courbure fréquente. Ce risque d'usure concerne également les roulements des systèmes à roulement intégré, les joints d'étanchéité de l'arbre sur les capteurs rotatifs et les systèmes de mesure angulaire, ainsi que les lèvres d'étanchéité des systèmes cartérisés de mesure linéaire.

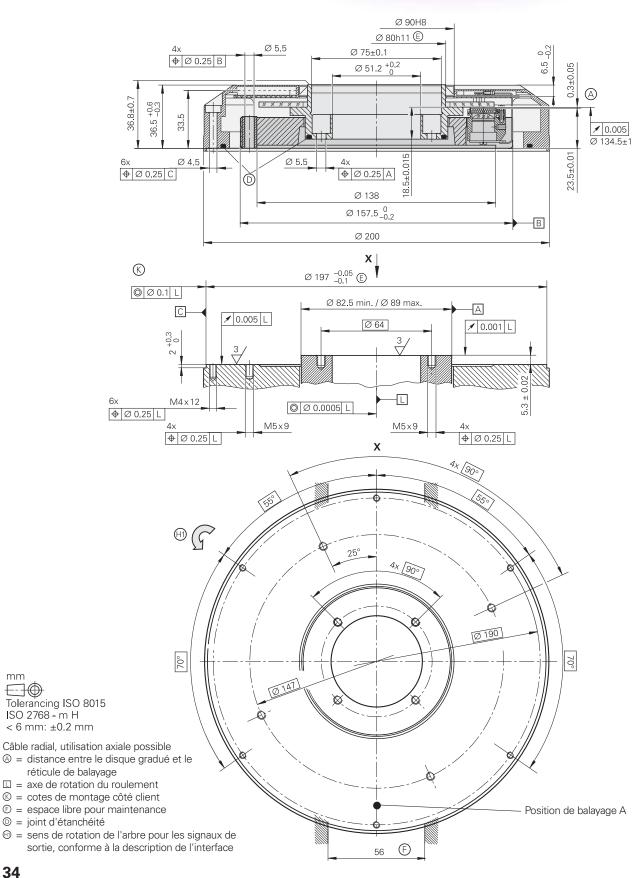
Tests du système

Les systèmes de mesure HEIDENHAIN sont souvent intégrés comme composants dans des systèmes globaux. Dans ce cas, et indépendamment des spécifications du système de mesure, il est impératif d'effectuer des **tests détaillés de l'ensemble du système.**

Les caractéristiques techniques de ce catalogue ne sont valables que pour le système de mesure et non pour l'ensemble du système. Toute utilisation du système de mesure en dehors de la plage spécifiée, ou non conforme à sa destination, engage la seule responsabilité de l'utilisateur.

Montage

Les étapes de montage et les cotes à respecter figurent dans le manuel de montage livré avec l'appareil. Les données relatives au montage mentionnées dans ce catalogue ne sont donc fournies qu'à titre indicatif et provisoire ; elles ne sont pas contractuelles.


DIADUR, AURODUR et METALLUR sont des marques déposées de la société DR. JOHANNES HEIDENHAIN GmbH, Traunreut.

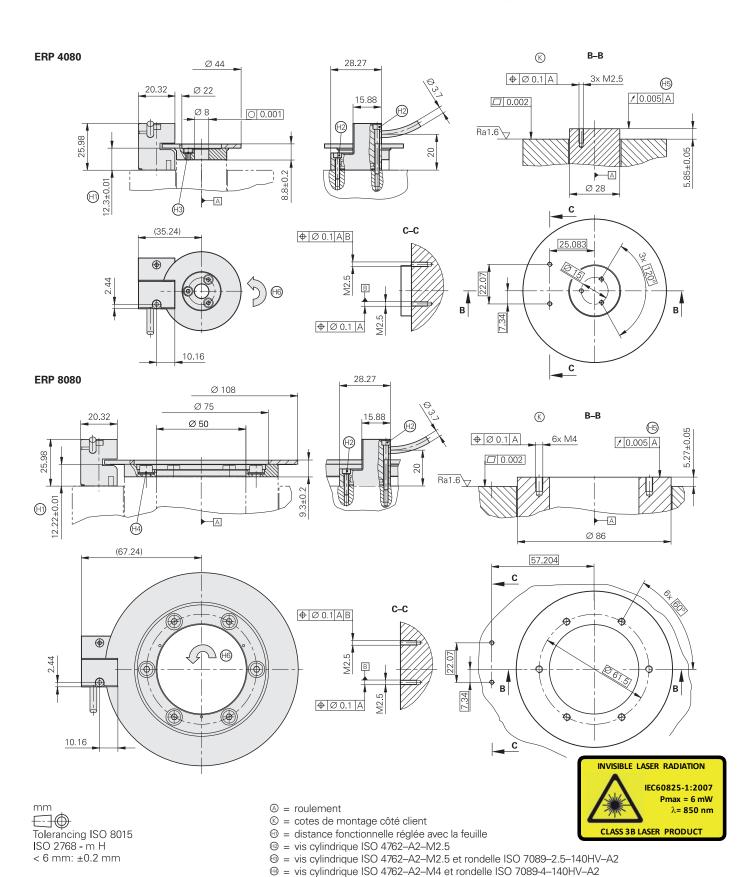
ERP 880

Système de mesure angulaire incrémentale de très haute précision

- résolution élevée
- boîtier de protection comme accessoire

	ERP 880			
Support de mesure	Réseau de phases DIADUR sur verre			
Périodes de signal	180 000			
Précision de la gravure	± 0,9"			
Écarts de position par période de signal ¹⁾	± 0,1"			
Marques de référence	une			
Diamètre intérieur du moyeu	51,2 mm			
Vitesse rotation méc. adm.	≤ 1000 min ⁻¹			
Moment d'inertie du rotor	$1.2 \cdot 10^{-3} \text{ kgm}^2$			
Déplacement axial adm. de l'arbre moteur	≤ ± 0,05 mm			
Interface	\sim 1 V_{CC}			
	≥ 800 kHz ≥ 1,3 MHz			
Raccordement électrique	avec boîtier : câble 1 m, avec prise d'accouplement M23 sans boîtier : via connecteur de platine 12 plots (câble adaptateur ID 372164-xx)			
Longueur de câble	≤ 150 m (avec câble HEIDENHAIN)			
Alimentation en tension	5 V CC ± 0,5 V			
Consommation en courant	≤ 250 mA (sans charge)			
Vibrations 55 à 2000 Hz Choc 6 ms	\leq 50 m/s ² (EN 60 068-2-6) \leq 1000 m/s ² (EN 60 068-2-27)			
Température de service	0 à 50 °C			
Indice de protection* EN 60529	sans boîtier : IP00	avec boîtier : IP40	avec boîtier et joint pour étancher l'arbre : IP64	
Couple au démarrage	-	0,25 Nm		
Poids	3,0 kg	3,1 kg avec boîtier		

^{*} à préciser à la commande


1) L'écart de position dans une période de signal et la précision de la division permettent d'obtenir les écarts spécifiques au système de mesure. Pour les autres écarts relevant du montage de l'arbre à mesurer, voir *Précision de mesure*.

ERP 4080/ERP 8080

Système de mesure angulaire incrémentale de haute précision

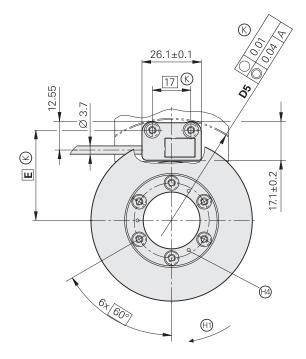
- résolution très élevée
- constitué d'une tête captrice et d'un disque gradué sur moyeu

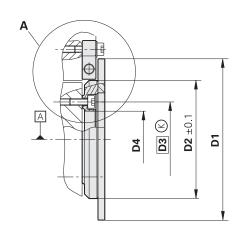
(9) = surface d'appui non convexe

📵 = sens de rotation de l'arbre pour les signaux de sortie, conforme à la description de l'interface

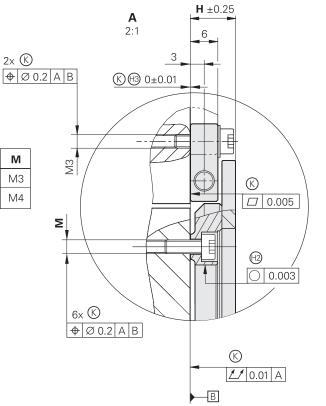
Tête captrice	AK ERP 4080	AK ERP 8080
Interface	∼1V _{CC}	
Fréquence limite –3 dB	≥ 250 kHz	
Raccordement électrique	câble 1 m avec prise Sub-D 15 plots	
Longueur de câble	≤ 30 m (avec câble HEIDENHAIN)	
Alimentation en tension	5 V CC ± 0,25 V	
Consommation en courant	≤ 150 mA (sans charge)	
Laser	Tête captrice et cercle gradué montés : classe 1 Tête captrice non montée : classe 3B Diode laser utilisée : classe 3B	
Vibrations 55 à 2000 Hz Choc 6 ms	≤ 50 m/s ² (EN 60068-2-6) ≤ 500 m/s ² (EN 60068-2-27)	
Température de service	15 à 40 ℃	
Poids	env. 33 g (sans câble)	

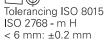
Disque gradué	TKN ERP 4080	TKN ERP 8080					
Support de mesure	Réseau de phases sur verre						
Périodes de signal	131 072	360 000					
Précision de la gravure	± 2"	± 1"					
Écarts de position par période de signal ¹⁾	± 0,1"	± 0,05"					
Marques de référence	aucune						
Diamètre intérieur du moyeu	8 mm	50 mm					
Vitesse rotation méc. adm.	≤ 300 min ⁻¹	≤ 100 min ⁻¹					
Moment d'inertie du rotor	5 · 10 ⁻⁶ kgm ²	250 · 10 ⁻⁶ kgm ²					
Déplacement axial adm. de l'arbre moteur	≤ ± 0,01 mm (y compris nutation)						
Indice protection EN 60529	IP00 (pour application en salle blanche)						
Poids	env. 36 g	env. 180 g					


L'écart de position dans une période de signal et la précision de la division permettent d'obtenir les écarts spécifiques au système de mesure. Pour les autres écarts relevant du montage de l'arbre à mesurer, voir *Précision de mesure*.


Série ERO 6000

Système de mesure angulaire incrémentale de très haute précision


- forme compacte
- poids réduit et faible moment d'inertie
- constitué d'une tête captrice et d'un disque gradué sur moyeu



D1	D2	D 3	D4	D5	Ε	Н	М
Ø 71	Ø 52	Ø 33	Ø 25H6	Ø 88.9H6	39.7	9.9	МЗ
Ø 150	Ø 130	Ø 107	Ø 95 +0.015 0	Ø 166H6	78.7	10.2	M4

 \triangle = roulement

® = cotes de montage côté client

⊕ = sens de rotation positif

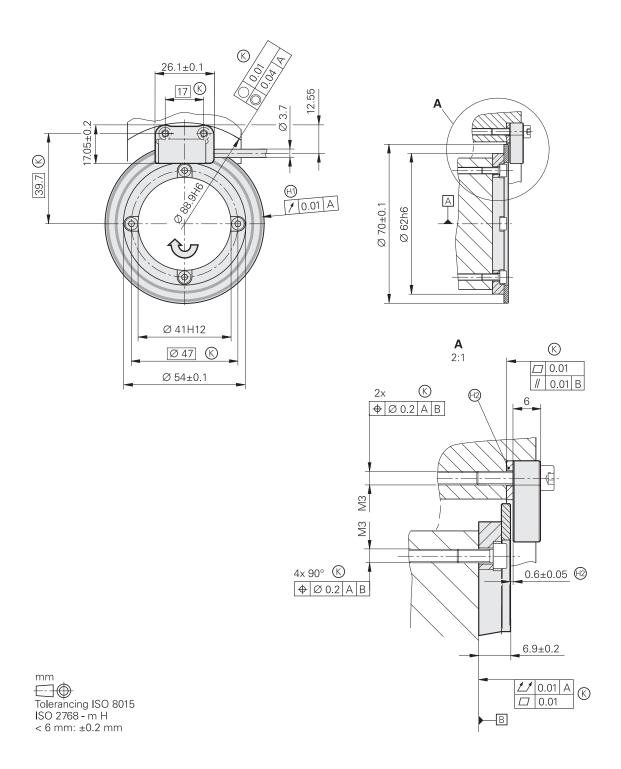
 Θ = collerette de centrage

 $^{\textcircled{1}}$ = tolérance de montage entre surface de montage tête captrice et moyeu du disque

⊕ = marques pour centrer le disque gradué (3x120°)

Tête captrice	AK ERO 6080	AK ERO 6070				
Interface	∼ 1 V _{CC}	□□□□L×5	□□TTL x 10	□□TTL x 50		
Signal de référence	impulsion rectangulaire					
Interpolation intégrée*	_	5 fois	10 fois	50 fois		
Fréquence limite –3 dB	≥ 200 kHz	-	-	-		
Fréquence de balayage	-	≤ 200 kHz	≤ 100 kHz	≤ 25 kHz		
Écart a entre les fronts	-	≥ 0,220 µs	≥ 0,220 µs	≥ 0,175 µs		
Raccordement électrique	câble 3 m avec prise Sub-	D (mâle) 15 plots ; pour ER	O 6070 électronique d'inte	rface dans la prise		
Longueur de câble	≤ 30 m					
Alimentation en tension	5 V CC ± 0,25 V					
Consommation en courant	< 100 mA (sans charge)	< 200 mA (sans charge)				
Vibrations 55 à 2000 Hz Choc 6 ms	≤ 200 m/s ² (EN 60068-2-6 ≤ 500 m/s ² (EN 60068-2-6	6) 27)				
Température de service	0 à 50 °C					
Poids Tête captrice Prise Câble	env. 6 g (sans câble) env. 32 g env. 22 g/m	env. 6 g (sans câble) env. 140 g env. 22 g/m				
	TKN ERO 6000					
Disque gradué	TKN ERO 6000					
Disque gradué Support de mesure	TKN ERO 6000 Division METALLUR sur v	verre				
		verre	18000			
Support de mesure	Division METALLUR sur v	verre	18000 ± 3,5"			
Support de mesure Périodes de signal*	Division METALLUR sur v	verre				
Support de mesure Périodes de signal* Précision de la gravure Écarts de position par	Division METALLUR sur v 9000 ± 5"	/erre	± 3,5"			
Support de mesure Périodes de signal* Précision de la gravure Écarts de position par période de signal ¹⁾	Division METALLUR sur v 9000 ± 5" ± 2"	/erre	± 3,5"			
Support de mesure Périodes de signal* Précision de la gravure Écarts de position par période de signal ¹⁾ Marques de référence Diamètre intérieur du	Division METALLUR sur v 9000 ± 5" ± 2" une	/erre	± 3,5" ± 1"			
Support de mesure Périodes de signal* Précision de la gravure Écarts de position par période de signal Marques de référence Diamètre intérieur du moyeu Diamètre extérieur du	Division METALLUR sur v 9000 ± 5" ± 2" une 25 mm	/erre	± 3,5" ± 1"			
Support de mesure Périodes de signal* Précision de la gravure Écarts de position par période de signal ¹⁾ Marques de référence Diamètre intérieur du moyeu Diamètre extérieur du disque gradué	Division METALLUR sur v 9000 ± 5" ± 2" une 25 mm	verre	± 3,5" ± 1" 95 mm 150 mm			
Support de mesure Périodes de signal* Précision de la gravure Écarts de position par période de signal Marques de référence Diamètre intérieur du moyeu Diamètre extérieur du disque gradué Vitesse rotation méc. adm.	Division METALLUR sur v 9000 ± 5" ± 2" une 25 mm 71 mm ≤ 1600 min ⁻¹	/erre	± 3,5" ± 1" 95 mm 150 mm ≤ 800 min ⁻¹			
Support de mesure Périodes de signal* Précision de la gravure Écarts de position par période de signal 11 Marques de référence Diamètre intérieur du moyeu Diamètre extérieur du disque gradué Vitesse rotation méc. adm. Moment d'inertie Déplacement axial	Division METALLUR sur v 9000 ± 5" ± 2" une 25 mm 71 mm ≤ 1600 min ⁻¹ 44 x 10 ⁻⁶ kgm ²	rerre	± 3,5" ± 1" 95 mm 150 mm ≤ 800 min ⁻¹			

^{*} à préciser à la commande


1) L'écart de position dans une période de signal et la précision de la division permettent d'obtenir les écarts spécifiques au système de mesure. Pour les autres écarts relevant du montage de l'arbre à mesurer, voir *Précision de mesure*.

ERO 6180

Système de mesure angulaire incrémentale

- forme compacte
- · poids réduit et faible moment d'inertie
- constitué d'une tête captrice et d'un disque gradué sur moyeu

 \triangle = roulement

© = cotes de montage côté client

📵 = centrage client du disque gradué avec moyeu d'après la division

e = régler la distance fonctionnelle avec la plaque de réglage

sens de déplacement de la tête captrice pour les signaux de sortie, conforme à la description de l'interface

Tête captrice	AK ERO 6180					
Interface	∼1V _{CC}					
Signal de référence	impulsion rectangulaire					
Fréquence limite –3 dB	≥ 200 kHz					
Raccordement électrique	câble 3 m avec prise Sub-D (mâle) 15 plots					
Longueur de câble	≤ 30 m					
Alimentation en tension	5 V CC ± 0,25 V					
Consommation en courant	< 100 mA (sans charge)					
Vibrations 55 à 2000 Hz Choc 6 ms	\leq 200 m/s ² (EN 60068-2-6) \leq 500 m/s ² (EN 60068-2-27)					
Température de service	0 à 50 °C					
Poids Tête captrice Prise Câble	env. 6 g (sans câble) env. 32 g env. 22 g/m					

Disque gradué	TKN ERO 6100
Support de mesure	Division chrome sur verre
Périodes de signal	4096
Précision de la gravure	± 10"
Écarts de position par période de signal ¹⁾	± 5"
Marques de référence	une
Diamètre intérieur du moyeu	41 mm
Diamètre extérieur du disque gradué	70 mm
Vitesse rotation méc. adm.	≤ 3500 min ⁻¹
Moment d'inertie	50 x 10 ⁻⁶ kgm ²
Déplacement axial admissible	≤ 0,1 mm
Indice protection EN 60529	IP00
Poids	env. 71 g

L'écart de position dans une période de signal et la précision de la division permettent d'obtenir les écarts spécifiques au système de mesure. Pour les autres écarts relevant du montage de l'arbre à mesurer, voir *Précision de mesure*.

ERA 4280C, ERA 4480C, ERA 4880C

Système de mesure angulaire incrémentale de très haute précision

- tambour gradué en acier avec collerette de centrage
- anneau de protection pour pressurisation, en option sur l'ERA 4480C
- constitué d'une tête captrice et d'un tambour gradué

ERA 4000

ERA 4000 avec anneau de protection pour la pressurisation

Tête captrice

Interface

Fréquence limite -3 dB

Raccordement électrique

Longueur de câble

Alimentation en tension

Consommation en courant

Vibrations 55 à 2000 Hz

Choc 6 ms

Température de service

Poids

Tête captrice

Tambour gradué

Support de mesure

Coefficient de dilatation

Périodes de signal/ écarts de position par période de signal¹⁾ ERA 4200

ERA 4400

ERA 4800

Précision de la gravure

Marques de référence

Diamètre intérieur du tambour*

Diamètre extérieur du tambour*

Vitesse rotation méc. adm.

Moment d'inertie du rotor

Déplacement axial adm.

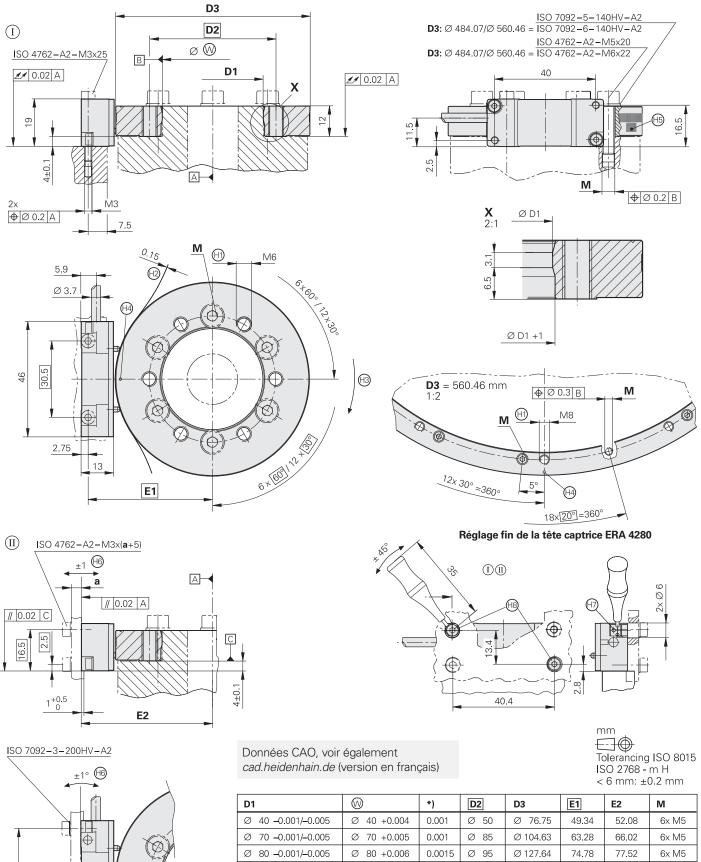
Indice protection* EN 60529

sans anneau protecteur pour pressurisation

avec anneau protecteur pour pressurisation²⁾ et air comprimé

Poids Tambour gradué

Anneau protecteur pour pressurisation

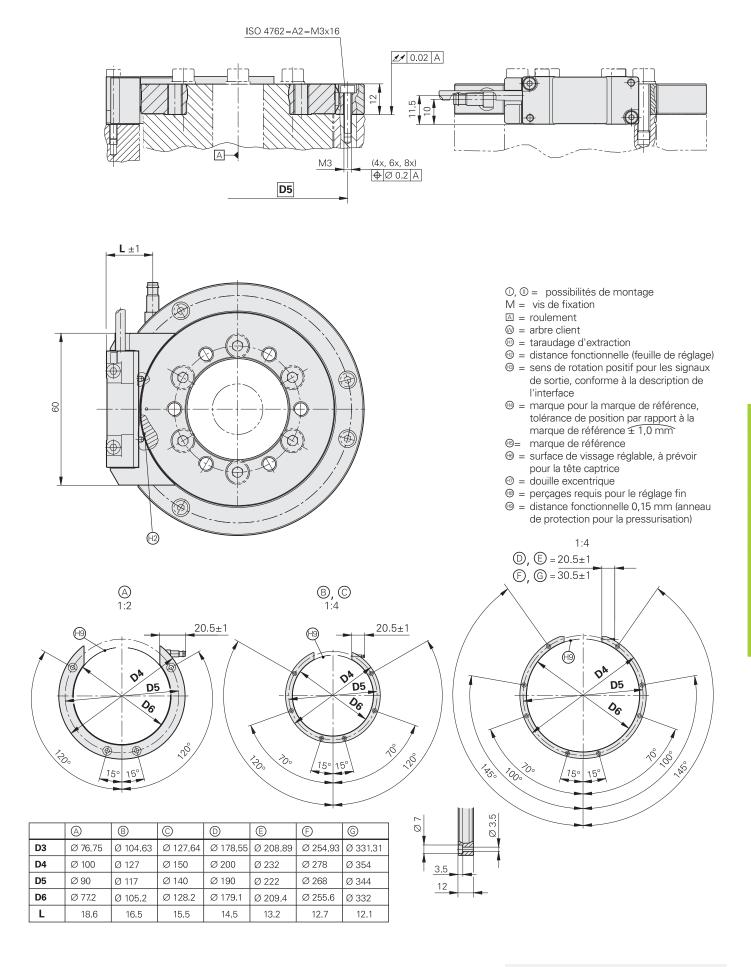

^{*} à préciser à la commande

AK ERA 4280 période de division 20 μm AK ERA 4480 période de division 40 μm AK ERA 4880 période de division 80 μm								
∼1 V _{CC}								
≥ 350 kHz								
Câble 1 m ave	c prise d'accou	plement M23 (1	2 plots)					
≤ 150 m (aved	câble HEIDENI	HAIN)						
5 V CC ± 0,5 \	/							
< 100 mA (sar	ns charge)							
$\leq 200 \text{ m/s}^2 \text{ (} \\ \leq 1000 \text{ m/s}^2 \text{ (} $	EN 60068-2-6) EN 60068-2-27)							
−10 °C à 80 °C	<u> </u>							
env. 20 g ; <i>têt</i>	e captrice assor	tie à l'anneau de	e protection po	ur pressurisation	n : env. 35 g (sai	ns câble)		
	,		, ,	,				
TTR ERA 440	OC période de c OC période de c OC période de c	livision 40 µm						
tambour en ad α _{therm} ≈ 10,5	cier - 10 ⁻⁶ K ⁻¹							
12000/± 1,1"	16384/± 0,8"	20000/± 0,7"	28000/± 0,5"	32768/± 0,4"	40000/± 0,4"	52000/± 0,3"	_	_
6000/± 2,2"	8192/± 1,6"	10000/± 1,3"	14000/± 1,0"	16384/± 0,8"	20000/± 0,7"	26000/± 0,5"	38000/± 0,4"	44000/± 0,3
3000/± 4,4"	4096/± 3,2"	5000/± 2,6"	7000/± 1,9"	8192/± 1,6"	10000/± 1,3"	13000/± 1,0"	_	_
± 5"	± 3,7"	± 3"	± 2,5"				± 2"	
à distances co	ı dées, une sur c	ll lemande						
40 mm	70 mm	80 mm	120 mm	150 mm	180 mm	270 mm	425 mm	512 mm
76,75 mm	104,63 mm	127,64 mm	178,55 mm	208,89 mm	254,93 mm	331,31 mm	484,07 mm	560,46 mm
10 000 min ⁻¹	8500 min ⁻¹	6250 min ⁻¹	4500 min ⁻¹	4250 min ⁻¹	3250 min ⁻¹	2500 min ⁻¹	1800 min ⁻¹	1500 min ⁻¹
0,27 · 10 ⁻³ kgm ²	0,81 · 10 ⁻³ kgm ²	1,9 · 10 ⁻³ kgm ²	7,1 · 10 ⁻³ kgm ²	12 · 10 ⁻³ kgm ²	28 · 10 ⁻³ kgm ²	59 · 10 ⁻³ kgm ²	195 · 10 ⁻³ kgm ²	258 · 10 ⁻³ kgm ²
≤ ± 0,5 mm (t	<u>I</u> ambour gradué	par rapport à la	tête captrice)					
IP00								
IP40	IP40	IP40	IP40	IP40	IP40	IP40	-	
env. 0,28 kg	env. 0,41 kg	env. 0,68 kg	env. 1,2 kg	env. 1,5 kg	env. 2,3 kg	env. 2,6 kg	env. 3,8 kg	env. 3,6 kg

¹⁾ L'écart de position dans une période de signal et la précision de la division permettent d'obtenir les écarts spécifiques au système de mesure. Pour les autres écarts relevant du montage de l'arbre à mesurer, voir *Précision de mesure*.
2) possible seulement avec l'ERA 4480, anneau protecteur pour la pressurisation à commander séparément

ERA 4280C, ERA 4480C, ERA 4880C

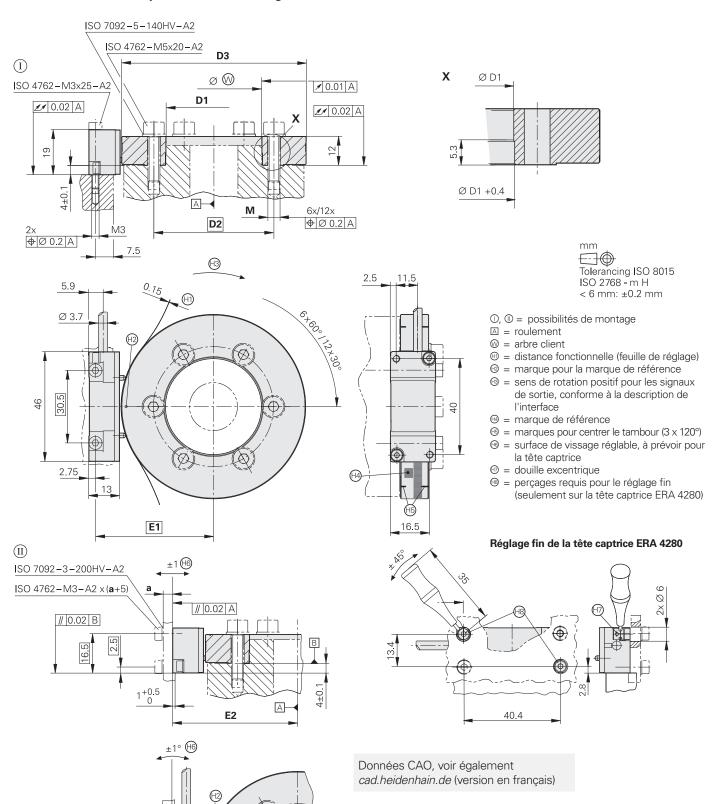
sans anneau de protection pour pressurisation


		,					
Ø 40 -0.001/-0.005	Ø 40 +0.004	0.001	Ø 50	Ø 76.75	49.34	52.08	6x M5
Ø 70 -0.001/-0.005	Ø 70 +0.005	0.001	Ø 85	Ø 104.63	63.28	66.02	6x M5
Ø 80 -0.001/-0.005	Ø 80 +0.006	0.0015	Ø 95	Ø 127.64	74.78	77.52	6x M5
Ø 120 -0.001/-0.008	Ø 120 +0.008	0.002	Ø 140	Ø 178.55	100.24	102.98	6x M5
Ø 150 -0.001/-0.008	Ø 150 +0.008	0.002	Ø 165	Ø 208.89	115.41	118.15	6x M5
Ø 180 -0.001/-0.008	Ø 180 +0.010	0.003	Ø 200	Ø 254.93	138.43	141.17	6x M5
Ø 270 0/ - 0.01	Ø 270 +0.012	0.003	Ø 290	Ø 331.31	176.62	179.36	12x M5
Ø 425 0/ - 0.01	Ø 425 +0.015	0.006	Ø 445	Ø 484.07	253.00	255.74	12x M6
Ø 512 0/ - 0.015	Ø 512 +0.016	0.007	Ø 528	Ø 560.46	291.19	293.93	18x M6

ФØ 0.2 С

40

ERA 4480 C


avec anneau de protection pour pressurisation

ERA 4282 C

Système de mesure angulaire incrémentale de haute précision

- tambour gradué en acier pour une grande précision exigée
- constitué d'une tête captrice et d'un tambour gradué

	(i)			-		
D1	∞	D2	D3	E1	E2	M
Ø 40 +0.07/+0.05	Ø ≤ 40	Ø 50	Ø 76.75	49.34	52.08	M5 6x
Ø 70 +0.07/+0.05	Ø ≤ 70	Ø 85	Ø 104.63	63.28	66.02	M5 6x
Ø 80 +0.07/+0.05	Ø ≤80	Ø 95	Ø 127.64	74.78	77.52	M5 6x
Ø 120 +0.07/+0.05	Ø ≤ 120	Ø 140	Ø 178.55	100.24	102.98	M5 6x
Ø 150 +0.07/+0.05	Ø ≤ 150	Ø 165	Ø 208.89	115.41	118.15	M5 6x
Ø 180 +0.07/+0.05	Ø ≤ 180	Ø 200	Ø 254.93	138.43	141.17	M5 6x
Ø 185 +0.07/+0.05	Ø ≤ 185	Ø 197	Ø 208.89	115.41	118.15	M3 12x
Ø 210 +0.07/+0.05	Ø ≤ 210	Ø 230	Ø 254.93	138.43	141.17	M3 12x
Ø 270 +0.07/+0.05	Ø ≤ 270	Ø 290	Ø 331.31	176.62	179.36	M5 12x

40

—: ф Ø 0.2 В

Tête captrice	AK ERA 4280
Interface	∼1V _{CC}
Fréquence limite –3 dB	≥ 350 kHz
Raccordement électrique	câble 1 m avec prise d'accouplement M23 (12 plots)
Longueur de câble	≤ 150 m (avec câble HEIDENHAIN)
Alimentation en tension	5 V CC ± 0,5 V
Consommation en courant	< 100 mA (sans charge)
Vibrations 55 à 2000 Hz Choc 6 ms	$\leq 100 \text{ m/s}^2 \text{ (EN 60068-2-6)}$ $\leq 500 \text{ m/s}^2 \text{ (EN 60068-2-27)}$
Température de service	−10 °C à 80 °C
Poids	env. 20 g (sans câble)

Tambour gradué	TTR ERA	TTR ERA 4202C							
Support de mesure Période de division Coefficient de dilatation	20 µm	tambour en acier 20 μm $\alpha_{therm} \approx 10.5 \cdot 10^{-6} \ K^{-1}$							
Périodes de signal	12000	16384	20000	28000	32 768	40000	32768	40000	52000
Précision de la gravure	± 4"	± 3"	± 2,5"	± 2"	± 1,9"	± 1,8"	± 1,9"	± 1,8"	± 1,7"
Écarts de position par période de signal ¹⁾	± 1,1"	± 0,8"	± 0,7"	± 0,5"	± 0,4"	± 0,4"	± 0,4"	± 0,4"	± 0,3"
Marques de référence	à distance:	s codées							
Diamètre intérieur du tambour*	40 mm	70 mm	80 mm	120 mm	150 mm	180 mm	185 mm	210 mm	270 mm
Diamètre extérieur du tambour*	76,75 mm	104,63 mm	127,64 mm	178,55 mm	208,89 mm	254,93 mm	208,89 mm	254,93 mm	331,31 mm
Vitesse rotation méc. adm.	10 000 min ⁻¹	8500 min ⁻¹	6250 min ⁻¹	4500 min ⁻¹	4250 min ⁻¹	3250 min ⁻¹	3250 min ⁻¹	3250 min ⁻¹	2500 min ⁻¹
Moment d'inertie du rotor	0,28 · 10 ⁻³ kgm ²	0,83 · 10 ⁻³ kgm ²	2,0 · 10 ⁻³ kgm ²	7,1 · 10 ⁻³ kgm ²	12 · 10 ⁻³ kgm ²	28 · 10 ⁻³ kgm ²	6,5 · 10 ⁻³ kgm ²	20 · 10 ⁻³ kgm ²	59 · 10 ⁻³ kgm ²
Déplacement axial adm.	≤ ± 0,5 mr	n (tambour	gradué par r	apport à la t	ête captrice)				
Indice protection EN 60529	IP00								
Poids	env. 0,30 kg	env. 0,42 kg	env. 0,70 kg	env. 1,2 kg	env. 1,5 kg	env. 2,3 kg	env. 0,66 kg	env. 1,5 kg	env. 2,6 kg

^{*} à préciser à la commande

1) L'écart de position dans une période de signal et la précision de la division permettent d'obtenir les écarts spécifiques au système de mesure. Pour les autres écarts relevant du montage de l'arbre à mesurer, voir *Précision de mesure*.

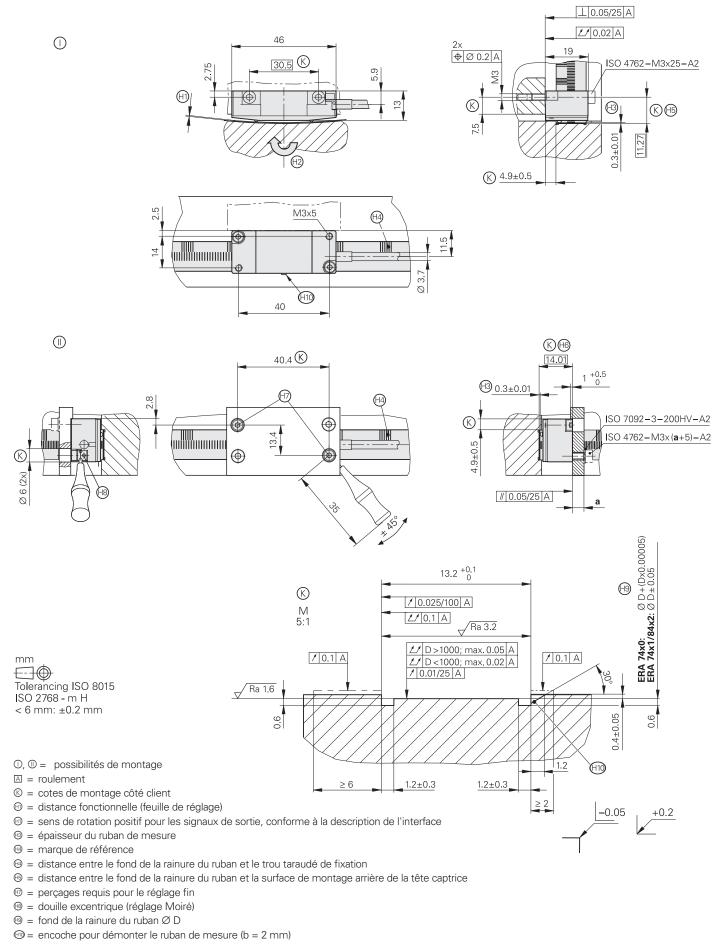
Série ERA 7000

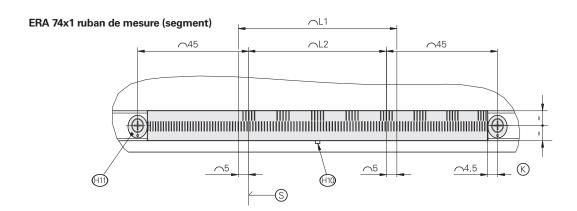
Système de mesure angulaire incrémentale de haute précision

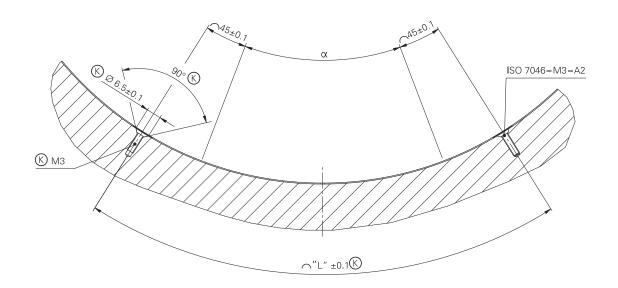
- ruban de mesure pour montage intérieur
- version pour cercle entier et version pour segment de cercle, également pour les très grands diamètres
- composé d'une tête captrice et d'un ruban de mesure

Tête captrice	AK ERA 7480
Interface	∼1V _{CC}
Fréquence limite –3 dB	≥ 350 kHz
Raccordement électrique	câble 1 m avec prise d'accouplement M23 (12 plots)
Longueur de câble	≤ 150 m (avec câble HEIDENHAIN)
Alimentation en tension	5 V CC ± 0,25 V
Consommation en courant	< 100 mA (sans charge)
Vibrations 55 à 2000 Hz Choc 6 ms	\leq 200 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)
Température de service	−10 °C à 80 °C
Poids	env. 20 g (sans câble)

Ruban de mesure		MSB ERA 7400C version pour cercle entier MSB ERA 7401C version pour segment de cercle				
Support de mesure Période de division Coefficient de dilatation	ruban de mesure en aci 40 µm $\alpha_{\text{therm}} \approx 10,5 \cdot 10^{-6} \text{ K}^{-1}$	ruban de mesure en acier avec division METALLUR 40 µm $\alpha_{therm}\approx 10,5\cdot 10^{-6}~\text{K}^{-1}$				
Périodes de signal ¹⁾	36000	45000	90 000			
Précision de la gravure ²	± 3,9"	± 3,2"	± 1,6"			
Écarts de position par période de signal ²⁾	± 0,4"	± 0,3"	± 0,1"			
Précision du ruban de mesure	± 3 µm/m de ruban					
Marques de référence	à distances codées					
Diamètre Cercle d'appui* entier	458,62 mm	573,20 mm	1146,10 mm			
Segme de cero	nt ≥ 400 mm					
Vitesse rotation méc. adn	n. ≤ 250 min ⁻¹	≤ 250 min ⁻¹	≤ 220 min ⁻¹			
Déplacement axial adm.	≤ 0,5 mm (ruban de mesure par rapport à la tête captrice)					
Coef. de dilatation thermique admissible de l'arbre $\alpha_{\text{therm}} \approx 9 \cdot 10^{-6} \text{ K}^{-1}$ jusqu'à 12 · 10 ⁻⁶ K ⁻¹						
Indice protection EN 60529 IP00						
Poids	env. 30 g/m					


^{*} à préciser à la commande


1) valable pour la version cercle entier ; pour la version segment de cercle : en fonction du diamètre d'appui et de la longueur du ruban


2) L'écart de position dans une période de signal et la précision de la division permettent d'obtenir les écarts spécifiques au système de mesure. Pour les autres écarts relevant du montage de l'arbre à mesurer, voir *Précision de mesure*.

Autres diamètres et vitesses de rotation supérieures disponibles sur demande

Série ERA 7000

$$D = \frac{n \times 0.04 \times 0.9999}{\pi} + 0.3$$

$$\alpha = \frac{n \times 0.04 \times 0.9999}{(D - 0.3) \times \pi} \times 360^{\circ}$$

$$L2 = n \times 0.04 \times 0.9999$$

 $\ \ \otimes = \operatorname{cotes} \operatorname{de} \operatorname{montage} \operatorname{côt\'e} \operatorname{client}$

© = début de la mesure

= encoche pour démonter le ruban de mesure (b = 2 mm)

en = rondelle excentrique pour tendre le ruban de mesure

= longueur de l'arc de cercle dans la fibre neutre, attention à l'épaisseur du ruban de mesure

 \cap L1 = course

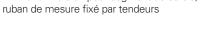
n = nombre de traits

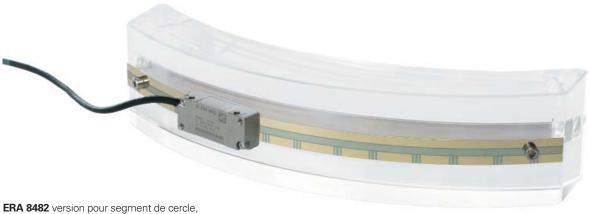
D = diamètre d'appui

 α = plage de mesure en degrés (segment de cercle)

 $\pi = 3.14159...$

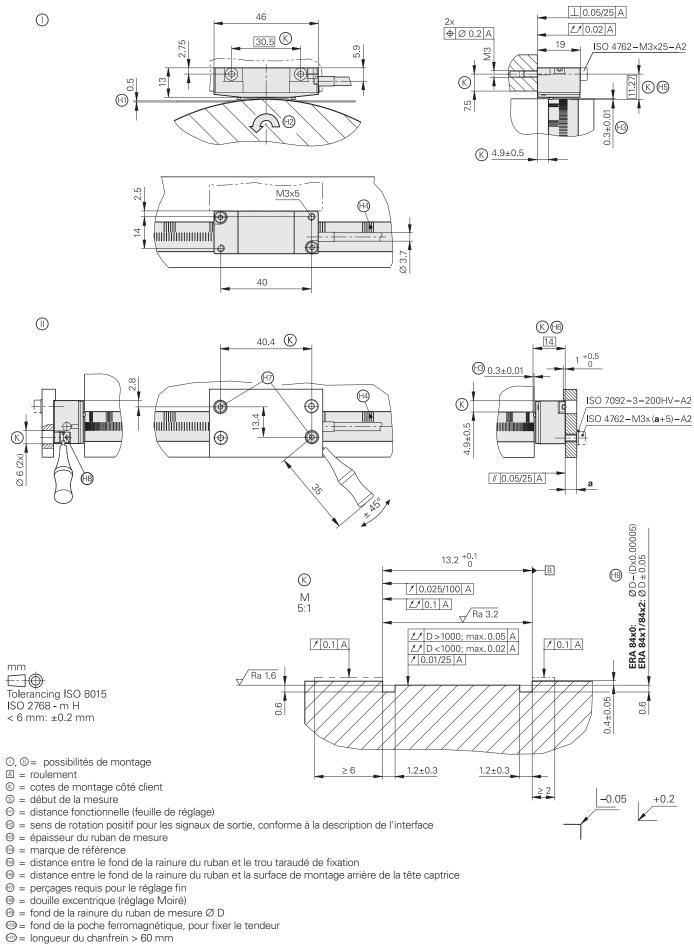
Série ERA 8000


Système de mesure angulaire incrémentale de haute précision


- ruban de mesure en acier pour montage extérieur
- version pour cercle entier et version pour segment de cercle, également pour les très grands diamètres
- composé d'une tête captrice et d'un ruban de mesure

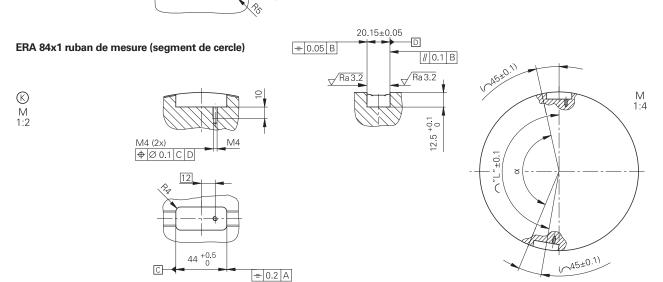
ruban de mesure sans tendeur

Tête captrice	AK ERA 8480
Interface	∼1V _{CC}
Fréquence limite –3 dB	≥ 350 kHz
Raccordement électrique	câble 1 m avec prise d'accouplement M23 (12 plots)
Longueur de câble	≤ 150 m (avec câble HEIDENHAIN)
Alimentation en tension	5 V CC ± 0,25 V
Consommation en courant	< 100 mA (sans charge)
Vibrations 55 à 2000 Hz Choc 6 ms	\leq 200 m/s ² (EN 60068-2-6) \leq 1000 m/s ² (EN 60068-2-27)
Température de service	−10 °C à 80 °C
Poids	env. 20 g (sans câble)

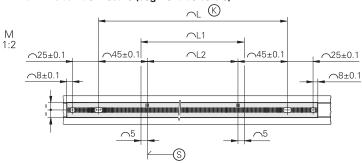

Ruban de mesur	e	MSB ERA 8400C version pour cercle entier MSB ERA 8401C version pour segment de cercle avec tendeurs MSB ERA 8402C version pour segment de cercle sans tendeur				
Support de mesu Période de divisio Coefficient de dila	n	ruban de mesure en acier avec division METALLUR 40 μm $\alpha_{therm} \approx 10.5 \cdot 10^{-6} \ K^{-1}$				
Périodes de sign	al ¹⁾	36000	45000	90000		
Précision de la g	ravure ²⁾	± 4,7"	± 3,9"	± 1,9"		
Écarts de positio période de signa	n par I ²⁾	± 0,4"	± 0,3"	± 0,1"		
Précision du ruban de mesure		± 3 µm/m de ruban				
Marques de réfé	à distances codées					
Diamètre d'appui*	Cercle entier	458,11 mm	572,72 mm	1145,73 mm		
	Segment de cercle					
Vitesse rotation m	néc. adm.	≤ 50 min ⁻¹	≤ 50 min ⁻¹	≤ 45 min ⁻¹		
Déplacement axial adm.		≤ ± 0,5 mm (ruban de mesure par rapport à la tête captrice)				
Coef. de dilatation thermique admissible de l'arbre $\alpha_{therm} \approx 9 \cdot 10^{-6} \text{ K}^{-1}$ jusqu'à $12 \cdot 10^{-6} \text{ K}^{-1}$						
Indice protection EN 60 529		IP00				
Poids env. 30 g/m						

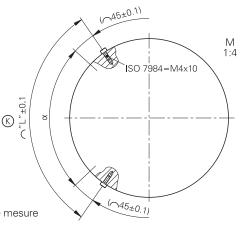
^{*} à préciser à la commande

1) valable pour la version cercle entier ; pour la version segment de cercle : en fonction du diamètre d'appui et de la longueur du ruban


2) La précision de la division et l'écart de position dans une période de signal permettent d'obtenir les écarts spécifiques au système de mesure. Pour les autres écarts relevant du montage de l'arbre à mesurer, voir *Précision de mesure*.

Série ERA 8000




54

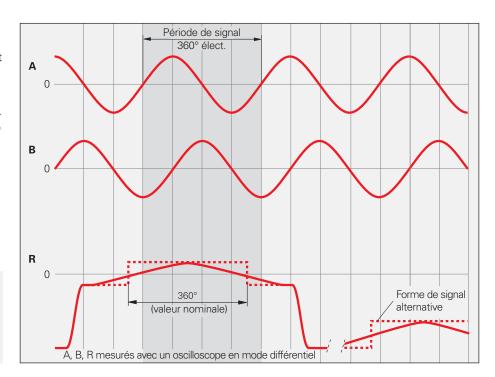
ERA 84x0 ruban de mesure (cercle_entier) √Ra 3.2 = 0.05 B / D x 0.00002 A √Ra 3.2 // 0.1 B √ Ra 1.6 (K) M 1:2 0.5 36 60 +0.5 . 92 = 0.2 A 41 +0.5 70 +0.5 **B** 5:1 **A** 5:1 (H11) 0.5±0.1×45 0.5±0.1x45°

- \triangle L1 = course
- △L2 = plage de mesure sur l'arc de cercle
- n = nombre de traits
- D = diamètre du fond de la rainure
- $\alpha \,$ = plage de mesure en degrés (segment de cercle)
- $\pi = 3.14159...$

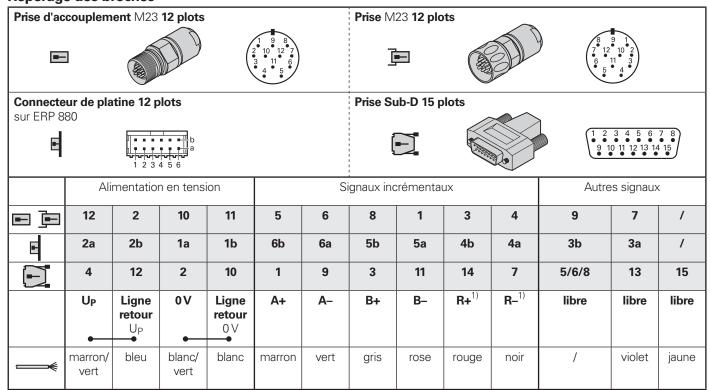
D =	$\frac{n \times 0.04 \times 1.0001}{\pi}$	- 0.3
α =	$\frac{n \times 0.04 \times 1.0001}{(D + 0.3) \times \pi}$	x 360°

 $L2 = n \times 0.04 \times 1.0001$

Interfaces


Signaux incrémentaux ~ 1 V_{CC}

Les systèmes de mesure HEIDENHAIN dotés d'une interface \sim 1 V_{CC} fournissent des signaux de tension qui peuvent être fortement interpolés.


Les **signaux incrémentaux** sinusoïdaux A et B sont déphasés de 90° élect. et leur amplitude typique est de 1 V_{CC}. Le diagramme des signaux de sortie – B en retard sur A – correspond au sens de déplacement indiqué dans le plan d'encombrement.

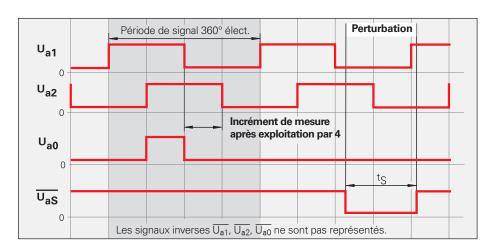
Le **signal des marques de référence** R peut clairement être identifié aux signaux incrémentaux. Il se peut que le signal de sortie baisse à proximité de la marque de référence.

Pour une description détaillée de toutes les interfaces disponibles et pour les informations électriques d'ordre général, consulter le catalogue *Interfaces des systèmes de mesure HEIDENHAIN*.

Repérage des broches

Blindage du câble relié au boitier ; U_P = tension d'alimentation **Ligne retour :** la ligne de retour est reliée dans le système de mesure (*ERO 6x80* : dans la prise) à la ligne d'alimentation correspondante. Les broches ou fils non utilisés doivent rester libres !

1) **ERP 4080/ERP 8080** : libre


Signaux incrémentaux PLITTL

Les systèmes de mesure HEIDENHAIN avec interface \(\to\text{LITTL}\) intègrent des électroniques qui convertissent les signaux de balayage sinusoïdaux (avec ou sans interpolation) en signaux numériques.

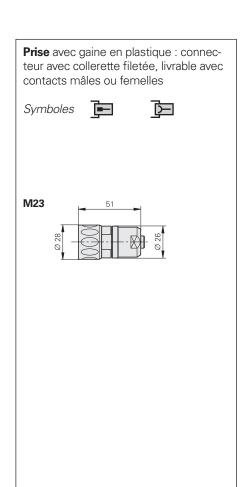
Les **signaux incrémentaux** sont émis sous forme de trains d'impulsions rectangulaires U_{a1} et U_{a2} avec un décalage de phase électrique de 90°. Le **signal de référence** est composé d'une ou plusieurs impulsions de référence U_{a0} qui sont combinées aux signaux incrémentaux. L'électronique intégrée génère parallèlement leurs **signaux inverses** $\overline{U_{a1}}$, $\overline{U_{a2}}$ et $\overline{U_{a0}}$ pour assurer une transmission sans interférences. La séquence de signaux de sortie représentée dans le graphique ci-contre – avec un retard du signal U_{a2} sur le signal U_{a1} – est valable pour le sens de déplacement indiqué sur le plan d'encombrement.

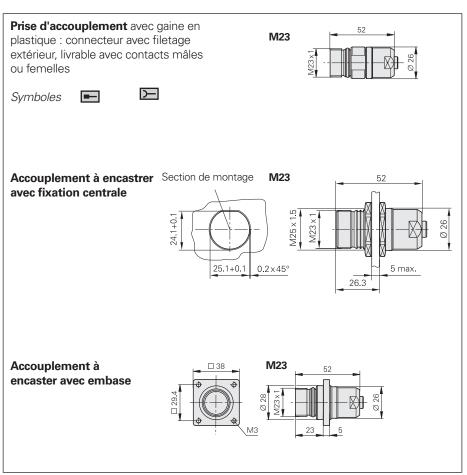
Le **signal de perturbation** $\overline{U_{aS}}$ fait état des problèmes de fonctionnement, par exemple de la rupture d'un câble d'alimentation, d'une défaillance de la source lumineuse, etc.

Le **pas de mesure** est obtenu en interpolant une, deux ou quatre fois l'écart entre deux fronts de signaux incrémentaux U_{a1} et U_{a2} .

Pour une description détaillée de toutes les interfaces disponibles et pour les informations électriques d'ordre général, consulter le catalogue *Interfaces des systèmes de mesure HEIDENHAIN*.

Repérage des broches


Prise Sub-D 15 plots 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15					ıb-D 15 p ace intég		électron	rique d'ac	1 2 3 4 5 9 10 11 12	13 14 15			
	Alimentation en tension		Signaux incrémentaux			Autres signaux							
	4	12	2	10	1	9	3	11	14	7	13	5/6/8	15
	U _P	Ligne retour	0 V	Ligne retour 0 V	U _{a1}	U _{a1}	U _{a2}	U _{a2}	U _{a0}	U _{a0}	U _{aS}	libre	libre ¹⁾
	marron/ vert	bleu	blanc/ vert	blanc	marron	vert	gris	rose	rouge	noir	violet	/	jaune

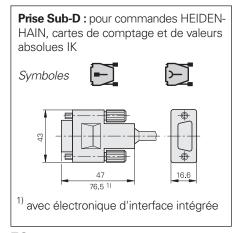

Blindage du câble relié au boîtier ; U_P = tension d'alimentation **Ligne retour :** la ligne retour est reliée dans le système de mesure ($ERO\ 6x70$: dans la prise) à la ligne d'alimentation correspondante. Les broches ou fils non utilisés doivent rester libres !

1) **ERO 6x70 :** commutation TTL/11 μA_{CC} pour PWT, sinon non raccordé

Câbles et connecteurs

Informations générales

Embase: fixée au système de mesure ou à un boîtier avec un filetage extérieur (comme la prise d'accouplement), disponible avec contacts mâles ou femelles


Symboles

M23

24.6

19.8

22.7

Le sens de **numérotation des broches** est différent suivant qu'il s'agit de connecteurs, de prises d'accouplement ou d'embases, mais il est indépendant du fait que les contacts sont de type

mâle ou femelle.

À l'état connecté, les connecteurs sont certifiés **IP67** (connecteur Sub-D : IP50, EN 60 529). Les connecteurs qui ne sont pas connectés n'ont aucune protection.

Accessoires pour embases et prises d'accouplement encastrables M23

Joint cloche ID 266526-01

Capot métallique anti-poussière à visser ID 219926-01

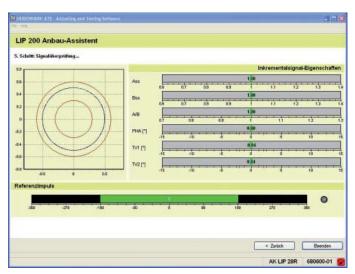
Câbles de liaison

		M23 12 plot	s
Câble de liaison PUR [6(2 \times 0,19 mm ²)] ; A	$V = 0.19 \text{ mm}^2$		
Câble de liaison PUR $[4(2 \times 0.14 \text{ mm}^2) + (4 \times 0.14 \text{ mm}^2)]$	$4 \times 0.5 \text{ mm}^2$)]; $A_V = 0.5 \text{ mm}^2$	Ø8mm	Ø 6 mm ¹⁾
câblage complet avec prise (femelle) et prise d'accouplement (mâle)		298401-xx	-
câblage complet avec prise (femelle) et connecteur (mâle)		298399-xx	-
câblage complet avec prise (femelle) et prise Sub-D (femelle) pour IK 220/ND 780		310199-xx	-
câblage complet avec prise (femelle) et orise Sub-D (mâle) pour IK 115/IK 215/ ND 280/ND 287/EIB 741		310196-xx	-
câblé à une extrémité avec prise (femelle)	→	309777-xx	_
câblage complet avec prise Sub-D femelle) et prise M23 (mâle)		331693-xx	355215-xx
câblé à une extrémité avec prise Sub-D femelle)	├	332433-xx	355209-xx
câblage complet avec prise Sub-D femelle) et prise Sub-D (mâle)		335074-xx	355186-xx
râblage complet avec prise Sub-D femelle) et prise Sub-D (femelle) pour K 220/ND 780		335077-xx	349687-xx
câble sans prises	> ────────	816317-xx	816323-xx
Câble de sortie pour ERP 880	PUR $[4(2 \times 0.05) + (4 \times 0.14)] \text{ mm}^2$; $A_V = 0.14 \text{ mm}^2$	Ø 4,5 mm	
câblé à une extrémité avec connecteur de platine 12 plots	longueur 1 m	372164-01	

 $^{^{1)}}$ longueur de câble pour Ø 6 mm : 9 m max. A_V : section transversale des fils d'alimentation

Connecteurs

			M23 12 plots
Contre-prise du câble assurant la liaison au connecteur de l'appareil	prise (femelle) pour câble	Ø8mm	291697-05
Prise pour connexion à l'électronique consécutive	connecteur (mâle) pour câble	Ø 8 mm Ø 6 mm	291697-08 291697-07
Prise d'accouplement du câble du sys- tème de mesure ou du câble de liaison	prise d'accouplement (mâle) pour câble	Ø 3,7 mm Ø 4,5 mm Ø 6 mm Ø 8 mm	291698-14 291698-14 291698-03 291698-04
Embase à encastrer dans l'électronique consécutive	embase (femelle)		315892-08
Prises d'accouplement encastrables	avec bride (femelle)	Ø 6 mm Ø 8 mm	291698-17 291698-07
	avec bride (mâle)	Ø 6 mm Ø 8 mm	291698-08 291698-31
	avec fixation centrale (mâle)	Ø 6 mm à 10 mm	741045-01
Adaptateur ~ 1 V _{CC} /11 μA _{CC} pour convertir les signaux 1 V _{CC} en signaux 11 μA _{CC} ; prise M23 (femelle) 12 plots et connecteur M23 (mâle) 9 plots			364914-01


Équipement de diagnostic et de contrôle

Les systèmes de mesure HEIDENHAIN fournissent toutes les données utiles à la mise en service, à la surveillance et au diagnostic. Le type d'informations disponibles varie suivant qu'il s'agit d'un système de mesure absolue ou incrémentale et suivant le type d'interface utilisé.

Les systèmes de mesure incrémentale sont généralement dotés d'une interface 1 V_{CC} , TTL ou HTL. Les systèmes de mesure TTL et HTL surveillent l'amplitude des signaux à l'intérieur de l'appareil et génèrent un signal de perturbation simple. Pour les signaux 1 V_{CC} , seuls des appareils de contrôle externes ou les processus de calcul de l'électronique consécutive sont capables d'analyser les signaux de sortie (interface de diagnostic analogique).

Pour analyser les systèmes de mesure, HEIDENHAIN propose les appareils de contrôle PWM et les appareils de test PWT. Suivant la manière dont ces appareils sont reliés, on distingue deux types de diagnostic:

- le diagnostic du système de mesure : celui-ci est directement raccordé à l'appareil de contrôle ou de test. Ainsi, il est possible d'analyser dans le détail les fonctions du système de mesure.
- le diagnostic dans la boucle d'asservissement: l'appareil de contrôle PWM est intégré dans la boucle d'asservissement fermée (éventuellement via un adaptateur de contrôle adapté). Un diagnostic en temps réel de la machine ou de l'installation est donc possible pendant le service. Les fonctions dépendent de l'interface.

Mise en service avec le PWM 20 et le logiciel ATS

PWM 20

Le phasemètre PWM 20, associé au logiciel de réglage et de contrôle ATS, sert de kit de réglage et de contrôle pour les systèmes de mesure HEIDENHAIN.

Pour plus d'informations, se référer à l'information produit *PWM 20/Logiciel ATS*.

	PWM 20
Entrée du système de mesure	 EnDat 2.1 ou EnDat 2.2 (valeur absolue avec ou sans signaux incrémentaux) DRIVE-CLiQ Fanuc Serial Interface Mitsubishi high speed interface Yaskawa Serial Interface SSI 1 Vcc/TTL/11 μAcc
Interface	USB 2.0
Alimentation en tension	100 V à 240 V CA ou 24 V CC
Dimensions	258 mm x 154 mm x 55 mm

	ATS
Langues	allemand ou anglais, au choix
Fonctions	 affichage de position dialogue de connexion diagnostic assistant de montage pour EBI/ECI/EQI, LIP 200, LIC 4000 et autres fonctions supplémentaires (si gérées par le système de mesure) contenus de mémoire
Conditions requises ou recommandées pour le système	PC (processeur double cœur ; > 2 GHz) mémoire vive > 2 Go Syst. d'exploit. Windows XP, Vista, 7 (32 ou 64 bits), 8 200 Mo disponibles sur le disque dur

DRIVE-CLiQ est une marque déposée de la société Siemens AG.

Le **PWM 9** est un appareil de contrôle universel qui permet de vérifier et d'ajuster les systèmes de mesure incrémentale HEIDENHAIN. Des modules enfichables sont disponibles pour l'adaptation aux différents signaux des systèmes de mesure. Un écran LCD affiche les données et des softkeys facilitent l'utilisation.

0001024

	PWM 9
Entrées	platines d'interface insérables pour signaux 11 µA _{CC} ; 1 V _{CC} ; TTL; HTL; EnDat*/SSI*/signaux de commutation *aucun affichage des valeurs de position et des paramètres
Fonctions	 mesure de l'amplitude des signaux, de la consommation en courant, de la tension d'alimentation et de la fréquence de balayage représentation graphique des signaux incrémentaux (amplitude, angle de phase et rapport cyclique) et du signal de référence (largeur et position) affichage de symboles pour la marque de référence, le signal de perturbation, le sens de comptage compteur universel, interpolation de 1 à 1024 fois, à sélectionner librement aide au réglage pour système de mesure à règle nue
Sorties	 entrées directement reliées à l'électronique consécutive connecteurs BNC à raccorder à un oscilloscope
Alimentation en tension	10 V à 30 V CC, 15 W max.
Dimensions	150 mm × 205 mm × 96 mm

Le **PWT** est un outil de réglage simple pour les systèmes de mesure incrémentale HEIDENHAIN. Les signaux sont affichés sous la forme de diagrammes en barres dans une petite fenêtre LCD avec leurs limites de tolérance.

	PWT 10	PWT 17	PWT 18	
Entrée du système de mesure	11 μA _{CC}		∼1V _{CC}	
Fonctions	mesure de l'amplitude du signal tolérance de forme du signal amplitude et position du signal de référence			
Alimentation en tension	via le bloc d'alimentation (compris dans la livraison		la livraison)	
Dimensions	114 mm x 64 mm x 29 mm			

L'électronique d'adaptation **APE 381** est nécessaire pour connecter les PWM/PWT aux systèmes de mesure avec compensation d'erreur de signal. L'APE 381 désactive la compensation d'erreur de signal (intégrée dans la tête captrice) et permet ainsi d'évaluer sans compensation les signaux de sortie 1 V_{CC} du système de mesure.

	APE 381
Entrée du système de mesure	1 V _{CC} (signaux redirigés)
Forme	câble avec prise Sub-D
Fonction	désactive la compensation d'erreur du signal intégrée dans la tête captrice
Alimentation en tension	par l'électronique consécutive

Électroniques d'interface

Les électroniques d'interface HEIDENHAIN adaptent les signaux des systèmes de mesure à l'interface de l'électronique consécutive. Elles sont donc mises en œuvre chaque fois que l'électronique consécutive ne peut pas traiter directement les signaux de sortie délivrés par les systèmes de mesure HEIDENHAIN ou qu'une interpolation des signaux s'avère nécessaire.

Signaux à l'entrée de l'électronique d'interface

Les électroniques d'interface HEIDENHAIN peuvent être connectées aux systèmes de mesure qui délivrent des signaux sinusoïdaux 1 V_{CC} (signaux de tension) ou 11 μ A_{CC} (signaux de courant). Il est également possible de connecter plusieurs électroniques d'interface à des systèmes de mesure dotés d'une interface série EnDat ou SSI.

Signaux à la sortie de l'électronique d'interface

Les électroniques d'interface vers l'électronique consécutive existent avec les interfaces suivantes :

- TTL trains d'impulsions rectangulaires
- EnDat 2.2
- DRIVE-CLiQ
- Fanuc Serial Interface
- Mitsubishi high speed interface
- Yaskawa Serial Interface
- Profibus

Interpolation des signaux d'entrée sinusoïdaux

Les signaux sinusoïdaux des systèmes de mesure sont convertis et interpolés dans l'électronique d'interface. Il en résulte alors des pas de mesure plus fins, ce qui accroît la qualité d'asservissement et la précision de positionnement.

Formation d'une valeur de position

Certaines électroniques d'interface disposent d'une fonction de comptage intégrée. En franchissant la marque de référence, on obtient à partir du dernier point de référence initialisé une valeur de position absolue qui est transmise à l'électronique consécutive.

Boîtier

Câblage

Version à intégrer

Matériel à monter sur rail DIN

Sorties		Entrées		Forme – Indice de protection	Interpolation ¹⁾ ou subdivision	Туре
Interface	Nombre	Interface	Nombre	protection	subdivision	
ГШПГ	1	∼ 1 V _{CC}	1	boîtier – IP65	5/10 fois	IBV 101
					20/25/50/100 fois	IBV 102
					sans interpolation	IBV 600
					25/50/100/200/400 fois	IBV 660 B
				câblage – IP40	5/10/20/25/50/100 fois	APE 371
				modèle à intégrer – IP00	5/10 fois	IDP 181
					20/25/50/100 fois	IDP 182
		∕ 11 μA _{CC}	1	boîtier – IP65	5/10 fois	EXE 101
					20/25/50/100 fois	EXE 102
					sans/5 fois	EXE 602E
					25/50/100/200/400 fois	EXE 660 B
				modèle à intégrer – IP00	5 fois	IDP 101
	2	∼ 1 V _{CC}	1	boîtier – IP65	2 fois	IBV 6072
∼ 1 V _{CC} réglable					5/10 fois	IBV 6172
					5/10 fois et 20/25/50/100 fois	IBV 6272
EnDat 2.2	1	∼1 Vcc	1	boîtier – IP65	≤ subdivision 16 384 fois	EIB 192
				câblage – IP40	≤ subdivision 16384 fois	EIB 392
			2	boîtier – IP65	≤ subdivision 16384 fois	EIB 1512
DRIVE-CLiQ	1	EnDat 2.2	1	boîtier – IP65	_	EIB 2391 S
Fanuc Serial Interface	1	∼1 V _{CC}	1	boîtier – IP65	≤ subdivision 16384 fois	EIB 192 F
				câblage – IP40	≤ subdivision 16384 fois	EIB 392 F
			2	boîtier – IP65	≤ subdivision 16384 fois	EIB 1592F
Mitsubishi	1	∼1 V _{CC}	1	boîtier – IP65	≤ subdivision 16384 fois	EIB 192M
high speed interface				câblage – IP40	≤ subdivision 16384 fois	EIB 392M
			2	boîtier – IP65	≤ subdivision 16384 fois	EIB 1592M
Yaskawa Serial Interface	1	EnDat 2.2 ²⁾	1	câblage – IP40	-	EIB 3391Y
PROFIBUS DP	1	EnDat 2.1; EnDat 2.2	1	matériel à monter sur rail DIN	-	Gateway PROFIBUS
1) commutable		2) uniquement LIC 4100 :	3//00 UD D36	do mosuro do 5 pm et LIC 2	100 avec un pas de mesure	

¹⁾ commutable

²⁾ uniquement LIC 4100 avec un pas de mesure de 5 nm et LIC 2100 avec un pas de mesure de 50 nm ou 100 nm

Électroniques d'exploitation

pour les opérations de mesure et de contrôle

Destinées aux applications de métrologie, les électroniques d'exploitation HEIDENHAIN acquièrent les valeurs de mesure et les traitent de manière intelligente, spécifiquement à l'application. Du simple poste de mesure aux systèmes de contrôle complexes assurés par plusieurs postes de mesure : elles sont mises en œuvre dans un grand nombre d'applications.

Les électroniques d'exploitation possèdent différents types d'interfaces pour supporter les différents signaux délivrés par les systèmes de mesure. Certains appareils, dotés d'un affichage intégré, fonctionnent de manière autonome, tandis que d'autres nécessitent un PC.

Le tableau ci-contre dresse la liste des électroniques d'exploitation qui sont utilisées pour les tâches de mesure et de contrôle. Pour obtenir de plus amples informations à ce sujet et se renseigner sur les autres électroniques d'exploitation destinées aux mesures 2D et 3D, consultez le site internet www.heidenhain.fr ou le catalogue de produits Électroniques d'exploitation pour applications de métrologie.

Grâce à leurs cycles pratiques, les visualisations de cotes HEIDENHAIN pour machines-outils conventionnelles assistent l'opérateur pendant les opérations de fraisage, perçage et tournage

Vous retrouverez ces visualisations de cotes sur le site internet www.heidenhain.fr ou dans le catalogue de produits Visualisations de cotes/Systèmes de mesure linéaire pour machines-outils conventionnelles.

Appareil avec affichage intégré p. ex. ND 2100 G GAGE-CHEK

Modèle modulaire - MSE 1000

MSE 1000

Électronique d'exploitation modulaire

- centrales multi-mesures
- postes de contrôle SPC

Électronique d'exploitation pour :

- postes de contrôle
- centrales multi-mesures
- acquisition mobile de données

Modèle de table - EIB 700

Modèle à intégrer - IK 220

Électronique d'exploitation à intégrer dans des systèmes informatiques dotés d'une interface PCI pour:

• postes de mesure et de contrôle

Électronique d'exploitation pour :

- équipements de mesure
- équipements de réglage et de contrôle
- postes de contrôle SPC

ND 1100 QUADRA-CHEK

Électronique d'exploitation pour :

- équipements de positionnement
- dispositifs de mesure

ND 2100 G GAGE-CHEK

Électronique d'exploitation pour :

- centrales multi-mesures
- postes de contrôle SPC

¹⁾ en option sur le ND 287

Fonctions	Entrée		Interpolation ou	Sortie	Туре
	Interface	Nombre	subdivision	Interface	
-	~ 1 V _{CC}	1	4096 fois	V-24/RS-232-C	ND 280
 fonctions de métrologie et statistiques (classification, séries de mesures, SPC) deuxième système de mesure¹⁾ pour l'affichage somme/différence, compensation de température 	11 μA _{CC} EnDat	jusqu'à 2		USB Ethernet ¹⁾	ND 287
séries de mesures avec acquisition des valeurs minimum/maximum	∼1V _{CC}	2	10 fois (avec 1 V _{CC})	V-24/RS-232-C USB	ND 1102
 Raccord pour système de palpage 		3			ND 1103
		4			ND 1104
programmation de 100 pièces max.affichage graphique des résultats de mesure	∼ 1 V _{cc} □⊔∏L EnDat	4	10 fois (avec 1 V _{CC})	V-24/RS-232-C USB	ND 2104G
 classement en fonction des limites de tolérance et d'avertissement séries de mesures avec acquisition du minimum/ maximum saisie de formules et d'opérateurs relationnels fonctions pour le contrôle statistique des procédés (SPC) 		8			ND 2108 G
 conception modulaire configuration libre différentes interfaces communication rapide avec le calculateur maître sorties universelles 	∼ 1 V _{CC} □□TTL EnDat Analogique	jusqu'à 250	4096 fois	Ethernet	MSE 1000
 mesure précise des positions avec une vitesse d'actualisation pouvant atteindre 50 kHz entrées des valeurs de mesure programmables déclencheur (trigger) des valeurs de mesure internes et externes mémoire pour typ. jusqu'à 250 000 valeurs de mesure par canal liaison aux PC maîtres par Ethernet standard 	∼1 Vcc	4	4096 fois	Ethernet	EIB 741 EIB 742
 entrées des valeurs de mesure programmables déclencheurs (trigger) de valeurs de mesure internes et externes mémoire pour 8192 valeurs de mesure par canal en option, modules pour sorties de systèmes de mesure et entrées/sorties externes 	∼ 1 V _{CC} ∼ 11 μA _{CC} EnDat SSI	2	4096 fois	Bus PCI	IK 220

1EIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH

Dr.-Johannes-Heidenhain-Straße 5

83301 Traunreut, Germany

+49 8669 31-0 FAX +49 8669 32-5061 E-mail: info@heidenhain.de

www.heidenhain.de

Vollständige und weitere Adressen siehe www.heidenhain.de For complete and further addresses see www.heidenhain.de

HEIDENHAIN Vertrieb Deutschland DF

83301 Traunreut, Deutschland
© 08669 31-3132
FAX 08669 32-3132 E-Mail: hd@heidenhain.de

HEIDENHAINTechnisches Büro Nord

12681 Berlin, Deutschland © 030 54705-240

HEIDENHAINTechnisches Büro Mitte

07751 Jena, Deutschland **2** 03641 4728-250

HEIDENHAIN Technisches Büro West

44379 Dortmund, Deutschland 0231 618083-0

HEIDENHAINTechnisches Büro Südwest

70771 Leinfelden-Echterdingen, Deutschland **2** 0711 993395-0

HEIDENHAINTechnisches Büro Südost

83301 Traunreut, Deutschland

© 08669 31-1345

AR NAKASE SRL.

B1653AOX Villa Ballester, Argentina www.heidenhain.com.ar

HEIDENHAIN Techn. Büro Österreich AT

83301 Traunreut, Germany www.heidenhain.de

AU FCR Motion Technology Pty. Ltd

Laverton North 3026, Australia E-mail: vicsales@fcrmotion.com

HEIDENHAIN NV/SA BE

1760 Roosdaal, Belgium www.heidenhain.be

BG ESD Bulgaria Ltd.

Sofia 1172, Bulgaria www.esd.bg

BR DIADUR Indústria e Comércio Ltda.

04763-070 - São Paulo - SP, Brazil www.heidenhain.com.br

GERTNER Service GmbH BY

220026 Minsk, Belarus www.heidenhain.by

HEIDENHAIN CORPORATION CA

Mississauga, OntarioL5T2N2, Canada www.heidenhain.com

HEIDENHAIN (SCHWEIZ) AG CH

8603 Schwerzenbach, Switzerland www.heidenhain.ch

DR. JOHANNES HEIDENHAIN CN (CHINA) Co., Ltd.

Beijing 101312, China www.heidenhain.com.cn

CZ HEIDENHAIN s.r.o.

102 00 Praha 10, Czech Republic www.heidenhain.cz

DK **TPTEKNIK A/S**

2670 Greve, Denmark www.tp-gruppen.dk

ES **FARRESA ELECTRONICA S.A.**

08028 Barcelona, Spain www.farresa.es

HEIDENHAIN Scandinavia AB FI

01740 Vantaa, Finland www.heidenhain.fi

HEIDENHAIN FRANCE sarl 92310 Sèvres, France FR

www.heidenhain.fr

GB

HEIDENHAIN (G.B.) Limited Burgess Hill RH15 9RD, United Kingdom www.heidenhain.co.uk

GR MB Milionis Vassilis

17341 Athens, Greece www.heidenhain.gr

HEIDENHAIN LTD HK

Kowloon, Hong Kong E-mail: sales@heidenhain.com.hk

HR Croatia → SL

IN

HU HEIDENHAIN Kereskedelmi Képviselet

1239 Budapest, Hungary www.heidenhain.hu

ID PT Servitama Era Toolsindo Jakarta 13930, Indonesia

E-mail: ptset@group.gts.co.id

NEUMO VARGUS MARKETING LTD. IL

Tel Aviv 61570, Israel E-mail: neumo@neumo-vargus.co.il

HEIDENHAIN Optics & Electronics

India Private Limited Chetpet, Chennai 600 031, India

www.heidenhain.in IT HEIDENHAIN ITALIANA S.r.I.

20128 Milano, Italy www.heidenhain.it

JP

HEIDENHAIN K.K. Tokyo 102-0083, Japan www.heidenhain.co.jp

HEIDENHAIN Korea LTD. KR

Gasan-Dong, Seoul, Korea 153-782 www.heidenhain.co.kr

HEIDENHAIN CORPORATION MEXICO MX

20290 Aguascalientes, AGS., Mexico E-mail: info@heidenhain.com

MY ISOSERVE SDN. BHD.

43200 Balakong, Selangor E-mail: sales@isoserve.com.my

HEIDENHAIN NEDERLAND B.V. NL

6716 BM Ede, Netherlands www.heidenhain.nl

NO

HEIDENHAIN Scandinavia AB 7300 Orkanger, Norway www.heidenhain.no

Machinebanks' Corporation PH

Quezon City, Philippines 1113 E-mail: info@machinebanks.com

ы

02-384 Warszawa, Poland www.heidenhain.pl

PT FARRESA ELECTRÓNICA, LDA.

4470 - 177 Maia, Portugal www.farresa.pt

RO

HEIDENHAIN Reprezentanță Romania Brașov, 500407, Romania www.heidenhain.ro

RS Serbia → BG

OOO HEIDENHAIN RU

115172 Moscow, Russia www.heidenhain.ru

HEIDENHAIN Scandinavia AB SE

12739 Skärholmen, Sweden www.heidenhain.se

SG HEIDENHAIN PACIFIC PTE LTD.

Singapore 408593 www.heidenhain.com.sg

KOPRETINATN s.r.o. SK 91101 Trencin, Slovakia

www.kopretina.sk

SL NAVO d.o.o.

2000 Maribor, Slovenia www.heidenhain.si

TH HEIDENHAIN (THAILAND) LTD

Bangkok 10250, Thailand www.heidenhain.co.th

T&M Mühendislik San. ve Tic. LTD. ŞTİ. TR

34775 Y. Dudullu -Ümraniye-Istanbul, Turkey www.heidenhain.com.tr

TW **HEIDENHAIN Co., Ltd.**

Taichung 40768, Taiwan R.O.C. www.heidenhain.com.tw

Gertner Service GmbH Büro Kiev 01133 Kiev, Ukraine www.heidenhain.ua UA

US HEIDENHAIN CORPORATION

Schaumburg, IL 60173-5337, USA www.heidenhain.com

VE Maquinaria Diekmann S.A.

Caracas, 1040-A, Venezuela E-mail: purchase@diekmann.com.ve

VN AMS Co. Ltd

HCM City, Vietnam E-mail: davidgoh@amsvn.com

MAFEMA SALES SERVICES C.C. ZA

Midrand 1685, South Africa www.heidenhain.co.za

